
COPYRIGHT ©2023 CRIBL, INC. ALL RIGHTS RESERVED.

ENRICHMENT: Better Data IN → Better Response TIMES OUT

Shawn Cannon
Threat Management Consultant/

Splunk Engineer, Aflac

Carley Rosato
Staff Solutions Engineer,

Cribl

Shawn cannon
Threat Management Consultant/
Splunk Engineer, Aflac

Shawn has more than 26 years of IT experience working in systems
administration, client hardware implementations, managed security
services and big data.

His current focus is managing the SIEM and AWS environment for
the SIEM, working to bring in new data as needed and improving on
the existing data ingestion process.

Outside of work, Shawn enjoys bowling, watching movies, and attending
sporting events (Atlanta Braves, Alabama Crimson Tide).

Fun fact: He loves wearing crazy, unique socks! He has over 50 different
pairs of socks which consist of movies, games, sports teams, and pop
culture. If you see him the rest of the week, you will see some of these socks!

CARLEY ROSATO
Staff Solutions Engineer,
Cribl

Carley has spent the entirety of her career in Technology, focusing
her efforts on optimizing security and operational data. She draws on
her past experience with complex logging platforms to support
organizations in reaching their business goals.

As a Solutions Engineer at Cribl, Carley works alongside customers
to design, build, and deploy modernized data solutions.

When “out of office,” you will most likely find her hiking or biking.

Why Cribl Stream?

Cribl Stream replaced antiquated syslog solution—huge win!

Over 2 years, we…

Replaced:

• HTTP Event Collector
for AWS sources

• Script collectors
(moved from Splunk HFs)

• REST collectors

Onboarded & optimized:

• Crowdstrike FDR

• Multiple S3 sources
(Cloudtrail, Cloudfront,
Incapsula/Imperva)

Fixed mixed data:

• Applied pipelines and
functions to fix mixed
data that had JSON
and non-JSON

• Joined JSON key/value
pairs into searchable fields
before sending to Splunk

And
many
more!

Challenge

• 34 million row Lookup file to enrich
data in Splunk

• Cribl + MongoDB + 3rd-party solution
becoming too costly

• Needed new, affordable solution fast!

Enriching Data With Cribl

Lookup Options in Cribl Stream

CSV Redis

Deployment Options On leader and pushed to workers Standalone, Clustered, Sentinel

Number of Rows <1 to 5 million >5 million

Cribl Resource Requirements More Memory required Less Memory

Network Requirements Not required as it is deployed on Worker Infrastructure Ideally, same Subnet as Workers to minimize latency

Frequency of Data Changes Rarely needs updating Regular Updates and Changes

Updates to the Lookup Data Manual of via Script Apply with Cribl Built-in Functions

Ideal Use Cases GeoIP, smaller environment asset tagging, HTTP
method description, network protocol (DNS vs. http)

Threat Intel [enriching from multiple feeds],
large environment asset tagging

SOLUTION

Cribl Stream + Redis Function FTW!

1. Created Redis Elasticache in AWS

2. Populate lookup file

3. Add Redis function in Cribl to add
needed fields to the data

Redis configuration

To create the Redis cache in AWS, determine the needed instance size. Redis docs say:

1 million small keys → String Value pairs use ~85MB of memory.

As I have the CSV file as a backup, I was not concerned with setting up a Redis cluster, so I opted to
not use clustering. I went with 1 shard and 3 nodes (1 node being primary and the other 2 as replicas).

I was able to use the smallest Redis Elasticache instance size of cache.r6g.large,
which is 2 CPUs and 13.07GB of memory.

So, 34 million small keys → String pairs would take approximately 2.8GB of memory.

Getting the CSV File Into Redis

1. CSV file is created every morning.
2. Scheduled Cron job runs to ingest the CSV into Redis.

Here is an example of the command using my test system:

awk -v rediskey=demo -v uidcolumn=1 -f /tmp/csv2redis.awk /tmp/lookup.csv |
redis-cli localhost:6379 –pipe

The process:
• awk command reads the csv file line by line using this script.
• Use demo as the Redis key and Column 1 in the CSV as the uid
• As each line is read, it is sent to Redis by piping to redis-cli.
• Each record gets stored in Redis in the format “demo:ACCT_NUMBER”

Can share the
csv2redis.awk file
I found online.

Using Redis Function in Cribl Stream

Redis instance populated.

Data needing enrichment
(CUSTOMER_ID field) passes
thru pipeline with Redis function.

Matches ACCT_NUMBER field
to the key in Redis and returns
the CUSTOMER_ID field.

BEFORE REDIS

Data coming into Cribl Stream
before the Redis function is applied.

AFTER REDIS

Data coming into Cribl Stream
after the Redis function is applied.

Advanced Deployment topics

Deployment Type

• Redis can be deployed in
Standalone, Clustered or
Sentinel mode. All three
are supported in Stream.

• Consider latency in retrieving
the data depending on the
location where is it deployed.

Advanced Settings

• Basic Commands can be called
from the dropdown, but additional
commands can be manually entered.

• Caching helps to minimize the
number of stale keys and amount
of time they are in your cache.

• Timeouts are used to determine if
Redis is unavailable and events should
continue to be passed downstream.

Redis Resources

Redis Pack
In this pack, you’ll find
template policies to
incorporate within your
existing pipelines. The
scenarios covered include
aggregation, sampling,
correlation, enrichment
and quota enforcement.

Redis How-To Video.

Managing Large Lookup Tables with Redis.

Enrichment at Scale Blog.

Large Lookups with Redis Blog Part II.

Redis Function Configurations.
Visit us at the CooLab to preview
solutions for popular use cases.

https://docs.cribl.io/stream/videos/
https://cribl.io/resources/managing-large-lookup-tables-with-redis/
https://cribl.io/blog/enrichment-at-scale/
https://cribl.io/blog/large-lookups-with-redis-part-ii/
https://docs.cribl.io/stream/redis-function/

COPYRIGHT ©2023 CRIBL, INC. ALL RIGHTS RESERVED.

