
To Promote the Progress  of Science and Useful Arts

The Director
of the United States Patent and Trademark Office has received 

an application for a patent for a new and useful invention. The title 
and description of the invention are enclosed. The requirements  
of law have been complied with, and it has been determined that  

a patent on the invention shall be granted under the law. 

Therefore, this United States

grants to the person(s) having title to this patent the right to exclude others from making, 
using, offering for sale, or selling the invention throughout the United States of America or 
importing the invention into the United States of America, and if the invention is a process, 
of the right to exclude others from using, offering for sale or selling throughout the United 
States of America, products made by that process, for the term set forth in 35 U.S.C. 154(a)(2) 
or (c)(1), subject to the payment of maintenance fees as provided by 35 U.S.C. 41(b). See the 
Maintenance Fee Notice on the inside of the cover.

Director of the United States Patent and Trademark Office



Maintenance Fee Notice
If the application for this patent was filed on or after December 12, 1980, maintenance fees 
are due three years and six months, seven years and six months, and eleven years and six 
months after the date of this grant, or within a grace period of six months thereafter upon 
payment of a surcharge as provided by law. The amount, number and timing of the mainte-
nance fees required may be changed by law or regulation. Unless payment of the applicable 
maintenance fee is received in the United States Patent and Trademark Office on or before 
the date the fee is due or within a grace period of six months thereafter, the patent will expire 
as of the end of such grace period.

Patent Term Notice
If the application for this patent was filed on or after June 8, 1995, the term of this patent 
begins on the date on which this patent issues and ends twenty years from the filing date of 
the application or, if the application contains a specific reference to an earlier filed applica-
tion or applications under 35 U.S.C. 120, 121, 365(c), or 386(c), twenty years from the filing date 
of the earliest such application (“the twenty-year term”), subject to the payment of mainte-
nance fees as provided by 35 U.S.C. 41(b), and any extension as provided by 35 U.S.C. 154(b) or 
156 or any disclaimer under 35 U.S.C. 253.

If this application was filed prior to June 8, 1995, the term of this patent begins on the date 
on which this patent issues and ends on the later of seventeen years from the date of the 
grant of this patent or the twenty-year term set forth above for patents resulting from appli-
cations filed on or after June 8, 1995, subject to the payment of maintenance fees as provided 
by 35 U.S.C. 41(b) and any extension as provided by 35 U.S.C. 156 or any disclaimer under 
35 U.S.C. 253.

Form PTO-377C (Rev 09/17)



(54) LOAD BALANCING COMPUTING
RESOURCES IN AN OBSERVABILITY
PIPELINE SYSTEM

(71) Applicant: Cribl, Inc., San Francisco, CA (US)

(72) Inventors: Dritan Bitincka, Edgewater, NJ (US);
Ledion Bitincka, San Francisco, CA
(US); Nicholas Robert Romito,
Chicago, IL (US); Clint Sharp,
Oakland, CA (US)

(73) Assignee: Cribl, Inc., San Francisco, CA (US)

( * ) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 251 days.

(21) Appl. No.: 17/346,881

(22) Filed: Jun. 14, 2021

(51) Int. Cl.
G06F 9/48 (2006.01)
G06F 9/50 (2006.01)
G06F 9/38 (2018.01)

(52) U.S. Cl.
CPC .......... G06F 9/4887 (2013.01); G06F 9/3842

(2013.01); G06F 9/505 (2013.01); G06F

9/5072 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

10,691,728 B1 6/2020 Masson et al.
2012/0066683 A1 * 3/2012 Srinath ................. G06F 9/4887

718/102

2018/0300174 A1 * 10/2018 Karanasos ............ G06F 9/4881
2018/0349212 A1 * 12/2018 Liu ......................... H04L 67/62
2020/0327037 A1 * 10/2020 Toal .................... G06F 11/3616

OTHER PUBLICATIONS

“Load Balancing (Computing)”, https://en.wikipedia.org/w/index.

php?title=Load_balancing_(computing)&oldid=1028284441, Jun. 13,

2021, 15 pgs.

“Round-robin Scheduling”, en.wikipedia.org/w/index.php?title=

Round-robin_scheduling&oldid=1019633430, Apr. 24, 2021, 5 pgs.

(Continued)

Primary Examiner — Eric C Wai

(74) Attorney, Agent, or Firm — Henry Patent Law Firm
PLLC

(57) ABSTRACT

Load balancing processes are performed in an observability
pipeline system comprising a plurality of computing
resources. In some aspects, the observability pipeline system
defines a leader role and worker roles. A plurality of com-
puting jobs each include computing tasks associated with
event data. The leader role dispatches the computing tasks to
the worker roles according to a least in-flight task dispatch
criteria, which includes iteratively: identifying an available
worker role; identifying one or more incomplete computing
jobs; selecting, from the one or more incomplete computing
jobs, a computing job that has the least number of in-flight
computing tasks currently being executed in the observabil-
ity pipeline system; identifying a next computing task from
the selected computing job; and dispatching the next com-
puting task to the available worker role. The worker roles
execute the computing tasks by applying an observability
pipeline process to the event data associated with the respec-
tive computing task.

20 Claims, 9 Drawing Sheets

US011748160B1

(12) United States Patent (10) Patent No.: US 11,748,160 B1
Bitincka et al. (45) Date of Patent: Sep. 5, 2023



(56) References Cited

OTHER PUBLICATIONS

Bitincka, Dritan , “Collectors”, docs.cribl.io/docs/collectors, accessed

Jun. 13, 2021, version last updated Jun. 5, 2021, 6 pgs.

Cribl, Inc., “Distributed Deployment”, docs.cribl.io/docs/deploy-
distributed, accessed Jun. 13, 2021, last updated May 21, 2021, 33
pgs.
Litras, Steve , “Data Collection is Here”, cribl.io/blog/data-collection-
is-here/ accessed Jun. 13, 2021, dated Jun. 15, 2020, 7 pgs.
Litras , “Working with Data in LogStream 2.2”, cribl.io/blog/
working-with-data-in-logstream-2-2/, Jul. 14, 2020, 5 pgs.
Romito , “Demystifying Collection Job Scheduling”, cribl.io/blog/
demystifying-collection-job-scheduling/, Jun. 24, 2020, 9 pgs.
Sharp , “Building an observability pipeline on top of open source
Apache NiFi, Logstash, or Fluentd: a journey”, cribl.io/blog/building-
an-observability-pipeline-on-top-of-open-source-apache-nifi-logstash-
or-fluentd-a-journey/, Jan. 21, 2020, 7 pgs.
Sharp, Clint, “Grappling with Observability Data Management”,
thenewstack.io/grappling-with-observability-data-management/, Mar.
31, 2021, 13 pgs.
Sharp , “The Observability Pipeline”, cribl.io/blog/the-observability-
pipeline/, Oct. 10, 2019, 10 pgs.
Treat, Tyler , “Microservice Observability, Part 2: Evolutionary
Patterns for Solving Observability Problems”, bravenewgeek.com/
microservice-observability-part-2-evolutionary-patterns-for-solving-
observability-problems/, Jan. 3, 2020, 8 pgs.
Turiff, Bryan , “Announcing Cribl LogStream 2.2: Baby Got
Batch!”, cribl.io/logstream-2-2-baby-got-batch/ accessed Jun. 13,
2021, dated Jun. 15, 2020, 9 pgs.

* cited by examiner

US 11,748,160 B1
Page 2



U.S. Patent Sep. 5, 2023 Sheet 1 of 9 US 11,748,160 B1



U.S. Patent Sep. 5, 2023 Sheet 2 of 9 US 11,748,160 B1



U.S. Patent Sep. 5, 2023 Sheet 3 of 9 US 11,748,160 B1



U.S. Patent Sep. 5, 2023 Sheet 4 of 9 US 11,748,160 B1



U.S. Patent Sep. 5, 2023 Sheet 5 of 9 US 11,748,160 B1



U.S. Patent Sep. 5, 2023 Sheet 6 of 9 US 11,748,160 B1



U.S. Patent Sep. 5, 2023 Sheet 7 of 9 US 11,748,160 B1



U.S. Patent Sep. 5, 2023 Sheet 8 of 9 US 11,748,160 B1



U.S. Patent Sep. 5, 2023 Sheet 9 of 9 US 11,748,160 B1



LOAD BALANCING COMPUTING

RESOURCES IN AN OBSERVABILITY

PIPELINE SYSTEM

BACKGROUND

The following description relates to load balancing com-
pute resources in an observability pipeline system.

Observability pipelines are used to route and process data
in a number of contexts. For example, observability pipe-
lines can provide unified routing of various types of machine
data to multiple destinations, while adapting data shapes and
controlling data volumes. In some implementations, observ-
ability pipelines allow an organization to interrogate
machine data from its environment without knowing in
advance the questions that will be asked. Observability
pipelines may also provide monitoring and alerting func-
tions, which allow systematic observation of data for known
conditions that require specific action or attention.

DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram showing aspects of an example
computing environment that includes an observability pipe-
line system.

FIG. 2 is a block diagram showing aspects of an example
observability pipeline system deployed in a worker role.

FIG. 3A is a signaling and flow diagram showing an
example process for collecting filtered event data from an
external data storage system.

FIG. 3B is a signaling and flow diagram showing an
example process for executing a data collection job in an
observability pipeline system.

FIG. 4 is a signaling and flow diagram showing an
example load balancing process performed in an observabil-
ity pipeline system.

FIG. 5 is a block diagram showing an example observ-
ability pipeline system that performs load balancing.

FIG. 6A is a utilization timeline showing an example load
balancing process that uses a round robin dispatch criteria.

FIG. 6B is a utilization timeline showing an example load
balancing process that uses a least in-flight task dispatch
criteria.

FIG. 7 is a block diagram showing an example computer
system.

DETAILED DESCRIPTION

In some aspects of what is described here, data payloads
from external data storage systems are processed in an
observability pipeline system. For example, the observabil-
ity pipeline system can include data collectors that perform
batch data ingestion from archival data stores, allowing the
archival data to be processed in the same way as a live data
stream. Data collectors can be configured for a number of
different external data storage systems and formats, and data
collection jobs can be configured to collect specific types of
data and apply custom analytics. For example, a data col-
lection job may filter data for troubleshooting or analysis,
convert log data to metrics, drop superfluous fields or
unnecessary data, sample logs or log lines, or perform other
types of filtering while preserving the original event data in
the external storage system. In some cases, data collectors
can provide a range of functionality, for example, retrieving
event data from storage; applying aggregation, enrichment,
filtering, sampling, or other processes; and delivering the
output to any destination.

The systems and techniques described here can provide

technical advantages and improvements over existing tech-

nologies. As an example, data collectors can provide

increased flexibility and efficiency for analyzing archived

data. In some implementations, data collectors allow an

observability pipeline to process data from external data

storage systems such as, for example, network file systems

(NFS), S3 buckets, AWS Glacier, S3-compatible stores, and

other cloud-based or network-based data storage systems.

For instance, an organization may have a data lake that

stores event data, and a data collector can enable the

observability pipeline to process the stored data alongside

live data streams from other sources. The ability to collect

data from external data storage systems and replay it to an

analytics tool at any point in time can provide tremendous

flexibility in how machine data are processed in the first

place. This can allow enterprise computer systems to extract

value from machine data while conserving computing

resources. Accordingly, aspects of the systems and tech-

niques described here can be used to improve the operation

of computer systems, information and data management
systems, observability pipeline systems, and other classes of
technology.

In some implementations, data collectors can provide
additional technical advantages and improvements when
applied to a number of enterprise computing applications. In
some cases, the volume of data sent to analytics tools is
reduced, which saves storage capacity and cost. Data that
has analytical value now can be discerned from data that can
be archived for analysis later or dropped altogether. Sending
more data to an indexed analytics tool generally increases
license and infrastructure costs. Separating out only the data
that needs to be analyzed today from the rest saves signifi-
cant computing resources and costs. The ability to collect
data from storage and replay it at a later time allows an
enterprise to be more aggressive, for example, reducing the
amount of data sent to analytics tools while putting full
fidelity into storage. In some cases, this can also enable
better approaches for data retention. Many industries and
organizations have retention policies that require keeping
data for a specified period of time, and there is significantly
higher cost associated with retaining data in data analytics
systems. By only putting data that needs to be analyzed in
real-time directly into a logging tool and routing a full copy
of the data to a lower-cost data storage system, the cost of
data retention can be significantly reduced. Allowing data to
be collected from data storage and replayed to analytics
tools reduces the need to retain data in the analytics tools
themselves. In some cases, data collectors enable better
investigation of security breaches and other incidents related
to computing infrastructure. Most security breaches are
discovered long after they start; recent examples show that
it can take years to learn that a security breach is ongoing.
Most organizations cannot provide the resources to retain
security logs in their analytics tools for many years. Data
collectors allow full-fidelity data to be stored in a low-cost
storage location for years, if not indefinitely, and collected
for analysis as needed. For instance, when security breaches
or other incidents are discovered, data can be collected from
storage, filtered according to the target time range and other
criteria, and security logs can be replayed to any tool of
choice. As such, data collectors enable efficient strategies for
keeping data long-term, so that organizations do not have to
support a massive computing infrastructure in order to make
data available for a proper investigation or analysis of
incidents.

US 11,748,160 B1

1 2

5

10

15

20

25

30

35

40

45

50

55

60

65



In some aspects of what is described here, an observabil-
ity pipeline system balances computing resources across
computing jobs. For example, the observability pipeline
system uses dispatch criteria to select computing tasks to be
executed by available computing resources. The dispatch
criteria can be configured to allocate computing resources in
a fair manner, for instance, balancing computing resources
across a number of computing jobs that have different task
durations. In some examples, a least in-flight task dispatch
criterion is used to dispatch computing tasks to available
worker roles. For instance, when a worker role is available,
a leader role can identify a computing job with the least
number of in-flight computing tasks, and dispatch a com-
puting task from that computing job to the available worker
role. This can provide technical advantages and improve-
ments in the observability pipeline system. For example,
certain computing jobs (e.g., certain data collection jobs)
may have longer running tasks compared to other computing
jobs, and a dispatch resource that performs appropriate load
balancing for a variety of computing jobs can improve the
overall speed and processing efficiency of the observability
pipeline system. In some cases, a dispatch resource can
equitably load balance tasks across each computing job
instead of gravitating resources towards the computing job
with longer running tasks. In some instances, this increases
utilization and causes some or all of the computing jobs to
be completed faster (in less time overall) without requiring
additional computing resources.

FIG. 1 is a block diagram showing aspects of an example
computing environment 100 that includes an observability
pipeline system 110. In addition to the observability pipeline
system 110, the example computing environment 100 shown
in FIG. 1 includes data sources 102, data destinations 104,
data storage 106, network 108, and a user device 120. The
computing environment 100 may include additional or dif-
ferent features, and the elements of the computing environ-
ment 100 may be configured to operate as described with
respect to FIG. 1 or in another manner.

In some implementations, the computing environment
100 contains the computing infrastructure of a business
enterprise, an organization or another type of entity or group
of entities. During operation, various data sources 102 in an
organization’s computing infrastructure produce volumes of
machine data that contain valuable or useful information.
The machine data may include data generated by the orga-
nization itself, data received from external entities, or a
combination. By way of example, the machine data can
include network packet data, sensor data, application pro-
gram data, observability data, and other types of data.
Observability data can include, for example, system logs,
error logs, stack traces, system performance data, or any
other data that provides information about computing infra-
structure and applications (e.g., performance data and diag-
nostic information). The observability pipeline system 110
can receive and process the machine data generated by the
data sources 102. For example, the machine data can be
processed to diagnose performance problems, monitor user
interactions, and to derive other insights about the comput-
ing environment 100. Generally, the machine data generated
by the data sources 102 does not have a common format or
structure, and the observability pipeline system 110 can
generate structured output data having a specified form,
format, or type. The output generated by the observability
pipeline system can be delivered to data destinations 104,
data storage 106, or both. In some cases, the data delivered
to the data storage 106 includes the original machine data
that was generated by the data sources 102, and the observ-

ability pipeline system 110 can later retrieve and process the
machine data that was stored on the data storage 106.

In general, the observability pipeline system 110 can
provide a number of services for processing and structuring
machine data for an enterprise or other organization. In some
instances, the observability pipeline system 110 provides
schema-agnostic processing, which can include, for
example, enriching, aggregating, sampling, suppressing, or
dropping fields from nested structures, raw logs, and other
types of machine data. The observability pipeline system
110 may also function as a universal adapter for any type of
machine data destination. For example, the observability
pipeline system 110 may be configured to normalize, denor-
malize, and adapt schemas for routing data to multiple
destinations. The observability pipeline system 110 may also
provide protocol support, allowing enterprises to work with
existing data collectors, shippers, and agents, and providing
simple protocols for new data collectors. In some cases, the
observability pipeline system 110 can test and validate new
configurations and reproduce how machine data was pro-
cessed. The observability pipeline system 110 may also have
responsive configurability, including rapid reconfiguration
to selectively allow more verbosity with pushdown to data
destinations or collectors. The observability pipeline system
110 may also provide reliable delivery (e.g., at least once
delivery semantics) to ensure data integrity with optional
disk spooling.

The data sources 102, data destinations 104, data storage
106, observability pipeline system 110, and the user device
120 are each implemented by one or more computer systems
that have computational resources (e.g., hardware, software,
firmware) that are used to communicate with each other and
to perform other operations. For example, each computer
system may be implemented as the example computer
system 700 shown in FIG. 7 or components thereof. In some
implementations, computer systems in the computing envi-
ronment 100 can be implemented in various types of
devices, such as, for example, laptops, desktops, worksta-
tions, smartphones, tablets, sensors, routers, mobile devices,
Internet of Things (IoT) devices, and other types of devices.
Aspects of the computing environment 100 can be deployed
on private computing resources (e.g., private enterprise
servers, etc.), cloud-based computing resources, or a com-
bination thereof. Moreover, the computing environment 100
may include or utilize other types of computing resources,
such as, for example, edge computing, fog computing, etc.

The data sources 102, data destinations 104, data storage
106, observability pipeline system 110, and the user device
120 and possibly other computer systems or devices com-
municate with each other over the network 108. The
example network 108 can include all or part of a data
communication network or another type of communication
link. For example, the network 108 can include one or more
wired or wireless connections, one or more wired or wireless
networks or other communication channels. In some
examples, the network 108 includes a Local Area Network
(LAN), a Wide Area Network (WAN), a private network, an
enterprise network, a Virtual Private Network (VPN), a
public network (such as the Internet), a peer-to-peer net-
work, a cellular network, a Wi-Fi network, a Personal Area
Network (PAN) (e.g., a Bluetooth low energy (BTLE)
network, a ZigBee network, etc.) or other short-range net-
work involving machine-to-machine (M2M) communica-
tion, or another type of data communication network.

The data sources 102 can include multiple user devices,
servers, sensors, routers, firewalls, switches, virtual
machines, containers, or a combination of these and other

US 11,748,160 B1

3 4

5

10

15

20

25

30

35

40

45

50

55

60

65



types of computer devices or computing infrastructure com-
ponents. The data sources 102 detect, monitor, create, or
otherwise produce machine data during their operation. The
machine data are provided to the observability pipeline
system 110 through the network 108. In some cases, the
machine data are streamed to the observability pipeline
system 110 as pipeline input data.

The data sources 102 can include data sources designated
as push sources (examples include Splunk TCP, Splunk
HEC, Syslog, Elasticsearch API, TCP JSON, TCP Raw,
HTTP/S, Raw HTTP/S, Kinesis Firehose, SNMP Trap,
Metrics, and others), pull sources (examples include Kafkaj,
Kinesis Streams, SQS, S3, Google Cloud Pub/Sub, Azure
Blob Storage, Azure Event Hubs, Office 365 Services, Office
365 Activity, Office 365 Message Trace, Prometheus) and
other data sources types.

The data destinations 104 can include multiple user
devices, servers, databases, analytics systems, data storage
systems, or a combination of these and other types of
computer systems. The data destinations 104 can include,
for example, log analytics platforms, time series databases
(TSDBs), distributed tracing systems, security information
and event management (SIEM) or user behavior analytics
(UBA) systems, and event streaming systems or data lakes
(e.g., a system or repository of data stored in its natural/raw
format). The pipeline output data produced by the observ-
ability pipeline system 110 can be communicated to the data
destinations 104 through the network 108.

The data storage 106 can include multiple user devices,
servers, databases, or a combination of these and other types
of data storage systems. Generally, the data storage 106 can
operate as a data source or a data destination (or both) for the
observability pipeline system 110. In some examples, the
data storage 106 includes a local or remote filesystem
location, a network file system (NFS), Amazon S3 buckets,
S3-compatible stores, other cloud-based data storage sys-
tems, enterprise databases, systems that provides access to
data through REST API calls or custom scripts, or a com-
bination of these and other data storage systems. The pipe-
line output data, which may include the machine data from
the data sources 102 as well as data analytics and other
output from the observability pipeline system 100, can be
communicated to the data storage 106 through the network
108.

The observability pipeline system 110 may be used to
monitor, track, and triage events by processing the machine
data from the data sources 102. The observability pipeline
system 110 can receive an event data stream from each of the
data sources 102 and identify the event data stream as
pipeline input data to be processed by the observability
pipeline system 110. The observability pipeline system 110
generates pipeline output data by applying observability
pipeline processes to the pipeline input data, and commu-
nicates the pipeline output data to the data destinations 104.
In some implementations, the observability pipeline system
110 operates as a buffer between data sources and data
destinations, such that all data sources send their data to the
observability pipeline system 110, which handles filtering
and routing the data to proper data destinations.

In some implementations, the observability pipeline sys-
tem 110 unifies data processing and collection across many
types of machine data (e.g., metrics, logs, and traces). The
machine data can be processed by the observability pipeline
system 110 by enriching it and reducing or eliminating noise
and waste. The observability pipeline system 110 may also
deliver the processed data to any tool in an enterprise
designed to work with observability data. For example, the

observability pipeline system 110 may analyze event data
and send analytics to multiple data destinations 104, thereby
enabling the systematic observation of event data for known
conditions which require attention or other action. Conse-
quently, the observability pipeline system 110 can decouple
sources of machine data from data destinations and provide
a buffer that makes many, diverse types of machine data
easily consumable.

In some example implementations, the observability pipe-
line system 110 can operate on any type of machine data
generated by the data sources 102 to properly observe,
monitor, and secure the running of an enterprise’s infrastruc-
ture and applications while minimizing overlap, wasted
resources, and cost. Specifically, instead of using different
tools for processing different types of machine data, the
observability pipeline system 110 can unify data collection
and processing for all types of machine data (e.g., logs 204,
metrics 206, and traces 208 shown in FIG. 2) and route the
processed machine data to multiple data destinations 104.
Unifying data collection can minimize or reduce redundant
agents with duplicate instrumentation and duplicate collec-
tion for the multiple destinations. Unifying processing may
allow routing of processed machine data to disparate data
destinations 104 while adapting data shapes and controlling
data volumes.

In an example, the observability pipeline system 110
obtains DogStatsd metrics, processes the DogStatsd metrics
(e.g., by enriching the metrics), sends processed data having
high cardinality to a first destination (e.g., Honeycomb) and
processed data having low cardinality to a second, different
destination (e.g., Datadog). In another example, the observ-
ability pipeline system 110 obtains windows event logs,
sends full fidelity processed data to a first destination (e.g.,
an S3 bucket), and sends a subset (e.g., where irrelevant
events are removed from the full fidelity processed data) to
one or more second, different destinations (e.g., Elastic and
Exabeam). In another example, machine data is obtained
from a Splunk forwarder and processed (e.g., sampled). The
raw processed data may be sent to a first destination (e.g.,
Splunk). The raw processed data may further be parsed, and
structured events may be sent to a second destination (e.g.,
Snowflake).

The example observability pipeline system 110 shown in
FIG. 1 includes a leader role 112 and multiple worker role
114. The leader role 112 leads the overall operation of the
observability pipeline system 110 by configuring and moni-
toring the worker roles 114; the worker roles 114 receive
event data streams from the data sources 102 and data
storage 106, apply observability pipeline processes to the
event data, and deliver pipeline output data to the data
destinations 104 and data storage 106.

The observability pipeline system 110 may deploy the
leader role 112 and a number of worker roles 114 on a single
computer node or on many computer nodes. For example,
the leader role 112 and one or more worker roles 114 may
be deployed on the same computer node. Or in some cases,
the leader role 112 and each worker role 114 may be
deployed on distinct computer nodes. The distinct computer
nodes can be, for example, distinct computer devices, virtual
machines, containers, processors, or other types of computer
nodes.

The example leader role 112 includes a dispatcher 116,
which can dispatch computing tasks to individual worker
roles. For example, the dispatcher 116 may be used to
dispatch data collection tasks or other types of computing
tasks. In some cases, the dispatcher 116 performs load
balancing or other types of processes to manage computing

US 11,748,160 B1

5 6

5

10

15

20

25

30

35

40

45

50

55

60

65



resources. For instance, the dispatcher 116 may operate as
described with respect to FIGS. 4, 5, and 6, or the dispatcher
116 may operate in another manner.

The dispatcher 116 can be deployed as a software
resource executed by a server, a user device, a cloud-based
computing resource, or another type of computer device. In
some implementations, the dispatcher 116 selects computing
tasks to be executed by available computing resources in an
efficient manner. In some cases, the dispatcher 116 uses
dispatch criteria that equitably balances computing
resources across a number of computing jobs that have
different task durations, and allows one or more of the
computing jobs to be completed faster or otherwise more
efficiently, relative to another dispatch criteria given the
same computing resources. In some cases, the dispatcher
116 can handle scheduled data collection jobs, which can
make batch collection of stored data more like continual
processing of streaming data.

The example worker roles 114 each include a collector
118. The collector 118 may be used to execute data collec-
tion tasks that retrieve and process data from external data
storage devices (e.g., data storage 106). In some cases, the
collector 118 operates as described with respect to FIG. 2,
3A, or 3B, or the collector 118 may operate in another
manner.

The collector 118 can be deployed as a software resource
executed by a server, a user device, a cloud-based computing
resource, or another type of computer device. In some
implementations, the collector 118 can process data from
inherently non-streaming sources (such as, e.g., REST end-
points, blob stores, etc.) and emulate a data stream by
scraping data from these sources in batches, on a set interval,
which essentially transforms a non-streaming data source
into a streaming data source. In some cases, a worker role
114 has multiple types of collectors 118 for different types
of data storage systems. For instance, an observability
pipeline system may provide Filesystem/NFS collectors that
enable data collection from local or remote filesystem loca-
tions; S3 collectors that enable data collection from Amazon
S3 buckets or S3-compatible stores; script collectors that
enable data collection via custom scripts; REST collectors
that enable data collection via REST API calls; or a com-
bination of these and other types of collectors.

In some implementations, the collectors 118 can be con-
figured to collect data in an ad hoc manner from data storage
106; track status of data collection jobs; control execution
(e.g., initiate, pause, cancel) of running data collection jobs;
filter files or other forms of data stored on the data storage
106; save parameterized data collection jobs for running
later; pipeline function for triggering an ad hoc collection;
sample data collection jobs before they are run in full run
mode; route collection job data to an event processor (routes,
pipelines, etc.) or directly to a pipeline and output combi-
nation; or perform a combination of these and other pro-
cesses.

In some cases, the collector 118 executes data collection
tasks that are generated by the leader role 112 according to
configuration information from the user device 120. For
instance, a user may configure specific data collection jobs
through a user interface provided on the user device 120. In
some cases, a user can schedule or manually run a data
collection job, and select settings such as the run mode (e.g.,
preview mode, discovery mode, or full run mode) and the
filter criteria (e.g., time range, file type, etc.) to match the
data against. The observability pipeline system 110 can use
the configuration information to generate a data collection
job, which is typically made up of one or more computing

tasks that discover the data to be fetched; fetch data that
match the filter criteria; and pass the results through selected
routes, analytics, or schemas (or a combination of them) in
an observability pipeline process.

In some cases, the collector 118 provides status informa-
tion to the user device 120, and the user device 120 provides
a graphical interface that displays information about data
collection jobs. For example, the graphical interface may
include a job inspector that allows a user to view and
manage pending, in-flight, and completed collection jobs.
The graphical interface may allow a user to view jobs
forward-scheduled for future execution (including their
schedule details, last execution, and next scheduled execu-
tion), or all jobs initiated in the past, regardless of comple-
tion status. The graphical interface may allow a user to view
job categories (e.g., ad hoc, scheduled, system, and run-
ning), filter the jobs shown within a selected job category,
sort, search, and select individual collection jobs or groups
of collection jobs, initiate actions for selected collection jobs
through action buttons (e.g., run, pause, stop, re-run, live
display, keep job artifacts, copy job artifacts, delete job
artifacts, display job logs).

The user device 120, the observability pipeline system
110, or both, can provide a user interface for the observ-
ability pipeline system 110. Aspects of the user interface can
be rendered on a display (e.g., the display 750 in FIG. 7) or
otherwise presented to a user. The user interface may be
generated by an observability pipeline application that inter-
acts with the observability pipeline system 110. The observ-
ability pipeline application can be deployed as software that
includes application programming interfaces (APIs), graphi-
cal user interfaces (GUIs), and other modules.

In some implementations, an observability pipeline appli-
cation can be deployed as a file, executable code, or another
type of machine-readable instructions executed on the user
device 120. The observability pipeline application, when
executed, may render GUIs for display to a user (e.g., on a
touchscreen, a monitor, or other graphical interface device),
and the user can interact with the observability pipeline
application through the GUIs. Certain functionality of the
observability pipeline application may be performed on the
user device 120 or may invoke the APIs, which can access
functionality of the observability pipeline system 110. The
observability pipeline application may be rendered and
executed within another application (e.g., as a plugin in a
web browser), as a standalone application or otherwise. In
some cases, an observability pipeline application may be
deployed as an installed application on a workstation, as an
“app” on a tablet or smartphone, as a cloud-based applica-
tion that accesses functionality running on one or more
remote servers, or otherwise.

In some implementations, the user interface provided by
the user device 120 (e.g., through an observability pipeline
application) allows users to preview a data collection job
before running it; view the current status of a data collection
job; cancel or pause a running data collection job; filter by
template variables in file names (e.g., timestamps embedded
in file name); filter by file type (e.g., .log, .gz, etc.), for
example, using a wildcard field that matches against the leaf
file name; save a template that can be reused without
re-entering API keys or bucket names each time; define a
pipeline function for a data collection job; and possibly other
operations.

In some implementations, the observability pipeline sys-
tem 110 is a standalone computer system that includes only
a single computer node. For instance, the observability
pipeline system 110 can be deployed on the user device 120

US 11,748,160 B1

7 8

5

10

15

20

25

30

35

40

45

50

55

60

65



or another computer device in the computing environment
100. For example, the observability pipeline system 110 and
can be implemented on a laptop or workstation. The stand-
alone computer system can operate as the leader role 112 and
the worker roles 114, and may execute an observability
pipeline application that provides a user interface as
described above. In some cases, the leader role 112 and each
of the worker roles 114 are deployed on distinct hardware
components (e.g., distinct processors, distinct cores, distinct
virtual machines, etc.) within a single computer device. In
such cases, the leader role 112 and each of the worker roles
114 can communicate with each other by exchanging signals
within the computer device, through a shared memory, or
otherwise.

In some implementations, the observability pipeline sys-
tem 110 is deployed on a distributed computer system that
includes multiple computer nodes. For instance, the observ-
ability pipeline system 110 and can be deployed on a server
cluster, on a cloud-based “serverless” computer system, or
another type of distributed computer system. The computer
nodes in the distributed computer system may include a
leader node operating as the leader role 112 and multiple
worker nodes operating as the respective worker roles 114.
One or more computer nodes of the distributed computer
system (e.g., the leader node) may communicate with the
user device 120, for example, through an observability
pipeline application that provides a user interface as
described above. In some cases, the leader node and each of
the worker nodes are distinct computer devices in the
computing environment 100. In some cases, the leader node
and each of the worker nodes can communicate with each
other using TCP/IP protocols or other types of network
communication protocols transmitted over a network (e.g.,
the network 108 shown in FIG. 1) or another type of data
connection.

In some implementations, the observability pipeline sys-
tem 110 is implemented by software installed on private
enterprise servers, a private enterprise computer device, or
other types of enterprise computing infrastructure (e.g., one
or more computer systems owned and operated by corporate
entities, government agencies, other types of enterprises). In
such implementations, some or all of the data sources 102,
data destinations 104, data storage 106, and the user device
120 can be or include the enterprise’s own computer
resources, and the network 108 can be or include a private
data connection (e.g., an enterprise network or VPN). In
some cases, the observability pipeline system 110 and the
user device 120 (and potentially other elements of the
computer environment 100) operate behind a common fire-
wall or other network security system.

In some implementations, the observability pipeline sys-
tem 110 is implemented by software running on a cloud-
based computing system that provides a cloud hosting
service. For example, the observability pipeline system 110
may be deployed as a SaaS system running on the cloud-
based computing system. For example, the cloud-based
computing system may operate through Amazon® Web
Service (AWS) Cloud, Microsoft Azure Cloud, Google
Cloud, DNA Nexus or another third-party cloud. In such
implementations, some or all of the data sources 102, data
destinations 104, data storage 106, and the user device 120
can interact with the cloud-based computing system through
APIs, and the network 108 can be or include a public data
connection (e.g., the Internet). In some cases, the observ-
ability pipeline system 110 and the user device 120 (and
potentially other elements of the computer environment 100)
operate behind different firewalls, and communication

between them can be encrypted or otherwise secured by

appropriate protocols (e.g., using public key infrastructure

or otherwise).

FIG. 2 is a block diagram showing aspects of an example

observability pipeline process 200 that can be applied by a

worker role in an observability pipeline system. For

example, the observability pipeline process 200 may be

performed by one or more of the worker roles 114 shown in

FIG. 1, the worker role 314 shown in FIG. 3B, one or more

of the worker roles 414 shown in FIG. 4, one or more of the

worker roles 514A, 514B, 514C shown in FIG. 5, or a

worker role in another observability pipeline system.

The example observability pipeline process 200 shown in

FIG. 2 includes data collection 230, schema normalization

220, routing 222, streaming analytics and processing 224A,

224B, 224C, and output schematization 226A, 226B, 226C,

226D, 226E. The observability pipeline process 200 may

include additional or different operations, and the operations

of the observability pipeline process 200 may be performed

as described with respect to FIG. 2 or in another manner. In

some cases, one or more of the operations can be combined,
or an operation can be divided into multiple sub-processes.
Certain operations may be iterated or repeated, for example,
until a terminating condition is reached.

As shown in FIG. 2, the observability pipeline process
200 is applied to pipeline input data 201 from data sources,
and the observability pipeline process 200 delivers pipeline
output data 203 to data destinations. The data sources can
include any of the example data sources 102 or data storage
106 described with respect to FIG. 1, and the data destina-
tions can include any of the example data destinations 104
or data storage 106 described with respect to FIG. 1.

The example pipeline input data 201 shown in FIG. 2
includes logs 204, metrics 206, traces 208, stored data
payloads 210 and possibly other types of machine data. In
some cases, some or all of the machine data can be generated
by agents (e.g. Fluentd, Collectd, OpenTelemetry) that are
deployed at the data sources, for example, on various types
of computing devices in a computing environment (e.g., in
the computing environment 100 shown in FIG. 1, or another
type of computing environment). The logs 204, metrics 206,
and traces 208 can be decomposed into event data 202 that
are consumed by the observability pipeline process 200. In
some instances, logs 204 can be converted to metrics 206,
metrics 206 can be converted to logs 204, or other types of
data conversion may be applied.

In the example shown, the stored data payloads 210
represent event data retrieved from external data storage
systems. For instance, the stored data payloads 210 can
include event data that an observability pipeline process
previously provided as output to the external data storage
system.

The event data 202 are streamed to the observability
pipeline process 200 for processing. Here, streaming refers
to a continual flow of data, which is distinct from batching
or batch processing. With streaming, data are processed as
they flow through the system continuously (as opposed to
batching, where individual batches are collected and pro-
cessed as discrete units). As shown in FIG. 2, the event data
from the logs 204, metrics 206 and traces 208 are streamed
directly to the schema normalization process (at 220) with-
out use of the collection process (at 230), whereas the event
data from the stored data payloads 210 are streamed to the
collection process (at 230) and then streamed to the schema
normalization process (at 220), the routing process (at 222)
or the streaming analytics and processing (at 224).

US 11,748,160 B1

9 10

5

10

15

20

25

30

35

40

45

50

55

60

65



In some instances, event data 202 represent events as
structured or typed key value pairs that describe something
that occurred at a given point in time. For example, the event
data 202 can contain information in a data format that stores
key-value pairs for an arbitrary number of fields or dimen-
sions, e.g., in JSON format or another format. A structured
event can have a timestamp and a “name” field. Instrumen-
tation libraries can automatically add other relevant data like
the request endpoint, the user-agent, or the database query.
In some implementations, components of the events data
202 are provided in the smallest unit of observability (e.g.,
for a given event type or computing environment). For
instance, the event data 202 can include data elements that
provide insight into the performance of the computing
environment 100 to monitor, track, and triage incidents (e.g.,
to diagnose issues, reduce downtime, or achieve other
system objectives in a computing environment).

In some instances, logs 204 represent events serialized to
disk, possibly in several different formats. For example, logs
204 can be strings of text having an associated timestamp
and written to a file (often referred to as a flat log file). The
logs 204 can include unstructured logs or structured logs
(e.g., in JSON format). For instance, log analysis platforms
store logs as time series events, and the logs 204 can be
decomposed into a stream of event data 202.

In some instances, metrics 206 represent lossily com-
pressed events. For example, a metric can have a metric
name, a metric value, and a low cardinality set of dimen-
sions. In some implementations, metrics 206 can be aggre-
gated sets of events grouped or collected at regular intervals,
and stored for low cost and fast retrieval. The metrics 206
are not necessarily discrete and instead represent aggregates
of data over a given time span. Types of metric aggregation
are diverse (e.g., average, total, minimum, maximum, sum-
of-squares) but metrics typically have a timestamp (repre-
senting a timespan, not a specific time); a name; one or more
numeric values representing some specific aggregated value;
and a count of how many events are represented in the
aggregate.

In some instances, traces 208 represent a series of events
with a parent/child relationship. A trace may provide infor-
mation of an entire user interaction and may be displayed in
a Gantt-chart like view. For instance, a trace can be a
visualization of events in a computing environment, show-
ing the calling relationship between parent and child events,
as well as timing data for each event. In some implemen-
tations, individual events that form a trace are called spans.
Each span stores a start time, duration, and an identification
of a parent event (e.g., indicated in a parent_id field). Spans
without an identification of a parent event are rendered as
root spans.

The example pipeline output data 203 shown in FIG. 2
include data formatted for log analytics platforms (250), data
formatted for time series databases (TSDBs) (252), data
formatted for distributed tracing systems (254), data format-
ted for security information and event management (SIEM)
or user behavior analytics (UBA) systems 256, and data
formatted for event streaming systems or data lakes 258
(e.g., a system or repository of data stored in its natural/raw
format). Log analytics platforms are configured to operate
on logs to generate statistics (e.g., web, streaming, and mail
server statistics) graphically. TSDBs operate on metrics;
example TSDBs include Round Robin Database (RRD),
Graphite’s Whisper, and OpenTSDB. Tracing systems oper-
ate on traces to monitor complex interactions, e.g., interac-
tions in a microservice architecture. SIEMs provide real-
time analysis of security alerts generated by applications and

network hardware. UBA systems detect insider threats,
targeted attacks, and financial fraud. Pipeline output data
203 may be formatted for, and delivered to, other types of
data destinations in some cases.

In the example shown in FIG. 2, the observability pipeline
process 200 includes a schema normalization module that (at
220) converts the various types of event data 202 to a
common schema or representation to execute shared logic
across different agents and data types. For example, machine
data from various agents such as Splunk, Elastic, Influx, and
OpenTelemetry have different, opinionated schemas, and the
schema normalization module can convert the event data to
normalized event data. Machine data intended for different
destinations may need to be processed differently. Accord-
ingly, the observability pipeline process 200 includes a
routing module that (at 222) routes the normalized event
data (e.g., from the schema normalization module 220) to
different processing paths depending on the type or content
of the event data. The routing module can be implemented
by having different streams or topics. The routing module
routes the normalized data to respective streaming analytics
and processing modules. FIG. 2 shows three streaming
analytics and processing modules, each applied to normal-
ized data (at 224A, 224B, 224C); however, any number of
streaming analytics and processing modules may be applied.
Each of the streaming analytics and processing modules can
aggregate, suppress, mask, drop, or reshape the normalized
data provided to it by the routing module. The streaming
analytics and processing modules can generate structured
data from the normalized data provided to it by the routing
module. The observability pipeline process 200 includes
output schema conversion modules that (at 226A, 226B,
226C, 226D, 226E) schematize the structured data provided
by the streaming analytics and processing modules. The
structured data may be schematized for one or more of the
respective data destinations to produce the pipeline output
data 203. For instance, the output schema conversion mod-
ules may convert the structured data to a schema or repre-
sentation that is compatible with a data destination. In some
implementations, the observability pipeline process 200
includes an at-least-once delivery module that (at 228)
applies delivery semantics that guarantee that a particular
message can be delivered one or more times and will not be
lost. In some implementations, the observability pipeline
process 200 includes an alerting or centralized state module,
a management module, or other types of sub-processes.

In the example shown in FIG. 2, the observability pipeline
process 200 includes a collection module that (at 230)
collects filtered event data from stored data payloads 210.
For example, the stored data payloads 210 may represent
event data that were previously processed and stored on the
event streaming/data lake 258 or event data that were
otherwise stored in an external data storage system. For
example, some organizations have a high volume of data
that is kept in storage systems (e.g., S3, Azure Blob Store,
etc.) for warehousing purposes, or they may have event data
that can be scraped from a REST endpoint (e.g., Pro-
metheus). The collection module allows organizations to
apply the observability pipeline process 200 to data from
storage, REST endpoints, and other systems regardless of
whether the data has been processed by an observability
pipeline system in the past. The data collection module can
retrieve the data from the stored data payload 210 on the
external data storage system, stream the data to the observ-
ability pipeline process 200 (e.g., via the schema normal-
ization module, the routing module, or a streaming analytics
and processing module), and send the output to any of the

US 11,748,160 B1

11 12

5

10

15

20

25

30

35

40

45

50

55

60

65



data destinations 230. In some cases, the collection module
represented in FIG. 2 may perform one or more operations
of the worker role 314 in FIG. 3B, or the collection module
may operate in another manner.

FIG. 3A is a signaling and flow diagram showing an
example process for collecting filtered event data from an
external data storage system and processing them in an
observability pipeline system 310. FIG. 3B is a signaling
and flow diagram showing an example process for executing
a data collection job in the observability pipeline system
310. For example, the process shown in FIG. 3B may be
used to run the collection job at 338 in FIG. 3A, or in another
context. The example processes shown in FIGS. 3A and 3B
may include additional or different operations, and the
operations may be performed in another order. In some
cases, one or more of the operations can be combined, or an
operation can be divided into multiple sub-processes. Cer-
tain operations may be iterated or repeated, for example,
until a terminating condition is reached.

The processes shown in FIGS. 3A and 3B are performed
in a computing environment 300 that includes data sources
302, data destinations 304, data storage 306, the observabil-
ity pipeline system 310, and a user device 320. The com-
puting environment 300 may include additional or different
features, and the elements of the computing environment
300 may operate as described with respect to FIGS. 3A and
3B or in another manner. In some cases, the data sources
302, data destinations 304, data storage 306, observability
pipeline system 310, and user device 320 shown in FIG. 3A
are implemented as the data sources 102, data destinations
104, data storage 106, the observability pipeline system 110,
and user device 120 shown in FIG. 1, or they may be
implemented in another manner.

The example observability pipeline system 310 includes
one or more computer nodes that operate as a leader role and
multiple worker roles. The leader role 312 and one of the
worker roles 314 are shown in FIG. 3B. The leader role and
worker roles of the observability pipeline system 310 can be
implemented as the leader role 112 and the worker roles 114
shown in FIG. 1, or they may be implemented in another
manner.

In some implementations, the observability pipeline sys-
tem 310 shown in FIGS. 3A and 3B is deployed on a
distributed computer system that includes multiple computer
nodes. The computer nodes in the distributed computer
system may include a leader node operating as the leader
role 312 and multiple worker nodes operating as the worker
roles. In some implementations, the observability pipeline
system is deployed on a standalone computer system that
includes only a single computer node. The computer node of
the standalone computer system can operate as the leader
role 312 and the worker roles.

At 322, the data sources 302 generate event data. The
event data are machine data generated or received, for
example, in an enterprise computer system. The event data
may be generated over time as the data sources 302 operate.
In some cases, the data sources 302 generate multiple types
of event data, and each type of event data may be generated
in a distinct format. The event data generated at 322 may
include any of the example pipeline input data 201 shown in
FIG. 2, or other types of event data.

At 324, the event data generated at 322 are provided to the
observability pipeline system 310 as pipeline input data. For
example, the pipeline input data may be communicated from
the data sources 302 to the observability pipeline system 310
over a network (e.g., the network 108 shown in FIG. 1). In
some cases, the pipeline input data are streamed to the

observability pipeline system 310 (e.g., in real time or near
real time) as new event data becomes available at the data
sources 302.

At 326, the observability pipeline system 310 processes
the event data. To process the event data, the observability
pipeline system 310 applies one or more observability
pipeline processes to the event data, which generates pipe-
line output data. For example, worker roles in the observ-
ability pipeline system 310 may generate pipeline output
data by applying the observability pipeline process 200
shown in FIG. 2, or another type of observability pipeline
process, to pipeline input data that include the event data.

At 328 and 330, the pipeline output data are delivered to
external data destinations, which include the data destina-
tions 304 and the data storage 306. For example, the
observability pipeline output data may be delivered to
external data destinations such as, for example, log analytics
250, TSDB 252, distributed tracing 254, SIEM/UBA 256,
event streaming/data lake 258 shown in FIG. 2. The pipeline
output data may be communicated from the observability
pipeline system 310 to the external data destinations over a
network (e.g., the network 108 shown in FIG. 1). In some
cases, the pipeline output data are communicated to the
external data destinations in multiple different formats (e.g.,
as different file types, etc.), for example, in formats that are
appropriate for each destination. At 332, the pipeline output
data are stored by the data destinations 304 and the data
storage 306.

As shown in FIG. 3A, the pipeline output data delivered
to the data storage 306 includes the event data that the
observability pipeline system received (at 324) and pro-
cessed (at 326) to generate the pipeline output data. In some
cases, the event data may be stored (at 332) in the same
format in which the event data was provided to the observ-
ability pipeline system 310 (at 324), or the event data may
be converted to a different form or format for the data
storage 306. In some cases, the event data are stored on the
data storage 306 as unindexed event data.

In the example shown in FIG. 3A, the data storage 306
functions as a data destination by storing (at 332) the
pipeline output data from the observability pipeline system
310, and the data storage 306 also functions as a data source
by providing data payloads that are processed in the observ-
ability pipeline system 310. In particular, some of the event
data stored by the data storage 306 (at 332) is collected (at
338) and re-processed (at 348) by the observability pipeline
system 310. As such, subsets of the event data stored by the
data storage 306 can be selectively “replayed” by the
observability pipeline system 310, alongside new event data
from any of the data sources 302. This functionality of the
observability pipeline system 310 can be initiated by a data
collection job, as discussed with respect to operations 334,
338, 346, 348, and others.

At 334, a data collection job is configured at the user
device 320. Configuring the data collection job may include,
for example, selecting filter parameters or other types of
event filter criteria to apply to the event data, selecting a data
pipeline or a certain observability pipeline process to apply
to the event data, selecting a time to run the data collection
job, selecting a mode (e.g., preview mode, full run mode,
etc.) for the data collection job, etc.

At 336, configuration information for the data collection
job is provided from the user device 320 to the observability
pipeline system 310. For example, the configuration infor-
mation may be communicated over a network (e.g., the
network 108 shown in FIG. 1). The configuration informa-
tion includes event filter criteria, which are used to collect

US 11,748,160 B1

13 14

5

10

15

20

25

30

35

40

45

50

55

60

65



filtered event data from the data storage 306. The event filter
criteria may be used to locate filtered event data, for
example, by indicating parameters of select event data to be
retrieved from the data storage 306. For example, the event
filter criteria may indicate a data source (e.g., a particular
data source or a type of data source), a type of event, a time
or date (or a range of times and dates), or other parameters
of the event data to be selectively retrieved from the data
storage 306. The configuration information may also indi-
cate an observability pipeline process to be applied to the
filtered event data, parameters for running the observability
pipeline process, etc.

In the example shown in FIG. 3A, the event filter criteria
are based on input received through a user interface of the
user device 320. For example, a user may indicate (e.g.,
through a graphical user interface provided by a web page,
an application, or another asset on the user device 320)
parameters of select event data to be retrieved from storage
and processed by the observability pipeline system 310. In
addition to the event filter criteria, other aspects of the
configuration information for the data collection job (e.g.,
identifying an observability pipeline process, etc.) may also
be based on input received through the user interface of the
user device 320. The configuration information may be
selected by the user, for instance, through dropdown lists,
labeled buttons, radio buttons, sliders, check box options,
text boxes or other types of graphical user interface widgets.

At 338, the observability pipeline system 310 generates
and runs a data collection job according to the configuration
information received at 336. As shown in FIG. 3A, while
running the data collection job (at 338), the observability
pipeline system 310 communicates with the data storage 306
to obtain filtered event data from the data storage 306 (at
340). Communicating with the external data storage system
to obtain filtered event data may include streaming the
filtered event data from the data storage 306 to the observ-
ability pipeline system 310. For instance, subsets of filtered
event data may be streamed to one or more of computer
nodes operating as worker roles in the observability pipeline
system 310.

While running the data collection job (at 338), the observ-
ability pipeline system 310 may also provide status infor-
mation to the user device 320 (at 342), which can be
displayed to a user. For example, the status information can
include live capture information that can be used to display
a representation of event data flowing through the observ-
ability pipeline system 310. The filtered event data retrieved
at 340 are the event data that meet the event filter criteria
included in the configuration information provided at 336.
For example, the filtered event data retrieved at 340 may
have a time stamp within a time range specified by the event
filter criteria; a data type or data format specified by the
event filter criteria; a file name or path name that matches the
event filter criteria; an error code or event type specified by
the event filter criteria; a data source specified by the event
filter criteria; or a combination of any of these and other
properties that meet the event filter criteria.

Certain aspects of running the data collection job at 338
and some of the subsequent operations in the process shown
in FIG. 3A depend on whether the data collection job is
being run in full run mode or preview mode. In some cases,
a data collection job can be run in another mode.

FIG. 3B shows example operations that may be used to
execute the data collection job at 338 in preview mode or
full run mode. FIG. 3B shows a single worker role 314, but
multiple worker roles may be used to execute the data
collection job. Typically, a data collection job will include a

data discovery task and multiple data collection tasks, and
the data collection tasks may be executed independently
(e.g., by multiple worker roles in parallel, by one worker role
in series, or a combination of these). In some cases, the
leader role 312 dispatches the data collection tasks, as well
as other computing tasks, to the worker roles in response to
work requests from the worker roles. The leader role 312
may include a dispatcher (e.g., the dispatcher 116 shown in
FIG. 1) that applies dispatch criteria to perform load bal-
ancing among worker roles. In some cases, the leader role
dispatches data collection tasks according to the example
process shown in FIG. 4, or another type of load balancing
process may be used.

As shown in FIG. 3B, the leader role 312 generates a data
discovery task. The data discovery task is generated based
on the configuration information received by the observabil-
ity pipeline system 310. In the example shown, the data
discovery task includes event filter criteria and possibly
other information derived from the configuration informa-
tion for the data collection job. The data discovery task is a
computing task that is configured to locate event data that
meet the event filter criteria. For instance, the data discovery
task may be configured to find all event data of a certain
type, provided by a particular data source over a particular
time period. The data discovery task can be executed by a
worker role, and may return information that identifies the
storage location (e.g., file names, file addresses, URLs, etc.)
of the event data that meet the event filter criteria.

At 362, the leader role 312 sends the data discovery task
to the worker role 314; and at 364, the worker role 314
executes the data discovery task. To execute the data dis-
covery task, the worker role 314 communicates with the data
storage 306 to identify a data payload that is stored on the
data storage 306 and contains event data that meet the event
filter criteria. At 366, the data storage 306 provides to the
worker role 314 information identifying the location of the
data payload. The data payload can be, for example, infor-
mation contained in a set of files or other types of data
structures. The information provided to the worker role may
include, for example, a list of files, a list of addresses, or
other information that identifies the data payload location.

Executing the data discovery task at 364 generates data
discovery results, which includes the data payload location
information received at 366. In some cases, the data storage
306 in FIG. 3B represents multiple external data storage
devices or systems, and the worker role 314 receives data
payload location information from each of the external data
storage devices or systems. In such cases, the data discovery
results may include a collection of data payload locations
associated with multiple external data storage devices or
systems.

At 368, the worker role 314 sends the data discovery
results to the leader role 312. The leader role 312 then
generates data collection tasks based on the data discovery
results. The data collection tasks are computing tasks that
are configured to jointly collect the data payload (identified
at 364) that contains the event data meeting the event filter
criteria. Together, the data collection tasks collect the data
payload, which forms the filtered event data in FIG. 3A, and
each individual data collection task collects a subset of the
filtered event data from the data payload. Each data collec-
tion task is executed by a respective worker role. FIG. 3B
shows only one data collection task, but generally multiple
data collection tasks will be generated and executed, by one
or more worker roles, for an individual data collection job.

At 370, the leader role generates a data collection task.
The data collection task may identify a particular portion of

US 11,748,160 B1

15 16

5

10

15

20

25

30

35

40

45

50

55

60

65



the data payload to be collected. For instance, an individual
data collection task may identify an address or file name
information for one or more data structures, an individual
file or a subset of files from a list of files included in the data
discovery results, or the data collection task may identify a
portion of the data payload in another manner. When the data
collection job is run in preview mode, the data collection
task can be labeled as a preview mode data collection task.
When the data collection job is run in full run mode, the data
collection task can be labeled as a full run mode data
collection task.

At 372, the leader role 312 sends the data collection task
to the worker role 314; and at 374, the worker role executes
the data collection task. To execute the data collection task,
the worker role 314 communicates with the data storage 306
to obtain a subset of the filtered event data from the data
payload. The subset of filtered event data contains a portion
of the event data that meet the event filter criteria.

As shown in FIG. 3B, executing the data collection task
includes, at 376, pulling content from the data payload
location identified in the data collection task. The worker
role 314 can communicate with the data storage 306 over a
network (e.g., the network 108 shown in FIG. 1) to pull the
subset of filtered event data at 376. In the example shown in
FIG. 3B, the worker role 314 streams the content from data
storage 306 at 378. The content streamed from the data
storage 306 in FIG. 3B is a subset of the filtered event data
received at 340 in FIG. 3A. A number of worker roles can
each obtain a distinct subset of the filtered event data, such
that the subsets obtained by the worker roles collectively
form the full set of filtered event data represented at 340 in
FIG. 3A.

In some cases, the data payload identified by the data
discovery task (at 364) is contained in a set of files, and the
subset of filtered event data received at 378 is the contents
of a single file. For instance, the data collection task gen-
erated at 370 may indicate one of the files, and the worker
role 314 may communicate with the data storage 306 to
obtain contents of the file indicated by the data collection
task. In some cases, the data payload identified by the data
discovery task (at 364) is contained in a set of files, and the
subset of filtered event data received at 378 is the contents
of multiple files. For instance, the data collection task
generated at 370 may indicate a subset of the set of files, and
the worker role 314 may communicate with the data storage
306 to obtain contents of the subset of files indicated by the
data collection task.

As shown in FIG. 3B, when the data collection job is
executed in preview mode, executing the preview data
collection task includes, at 380, sending the subset of filtered
event data from the worker role 314 to the leader role 312.
The leader role 312 may then send the subset of filtered
event data to a user device (e.g., at 344 in FIG. 3A) or the
leader role 312 may handle the subset of filtered event data
in another manner.

As shown in FIG. 3B, when the data collection job is
executed in full run mode, executing the full run mode data
collection task includes, at 382, streaming the subset of
filtered event data to an observability pipeline process. For
example, the worker role 314 may identify the subset of
filtered event data as pipeline input data to be processed by
the worker role 314. Accordingly, the content that is
streamed from storage at 378 is then streamed to the
observability pipeline process at 382. When the observabil-
ity pipeline 310 processes the filtered event data (at 348 in
FIG. 3A), the worker role 314 applies the observability
pipeline process to the subset of filtered event data that the

worker role 314 streamed at 382. As such, the filtered event
data are processed in the observability pipeline 310 (at 348
in FIG. 3A) by operation of the worker roles applying
observability pipeline processes to respective subsets of the
filtered event data. In particular, each worker role applies an
observability pipeline process to the subset of filtered event
data that it receives and streams (e.g., at 374 in FIG. 3B).
The output generated by the worker roles can collectively
form the pipeline output data generated at 348 in FIG. 3A.

As shown in FIG. 3A, when a data collection job is run in
preview mode, the filtered event data are provided from the
observability pipeline system 310 to the user device 320 (at
344). Preview mode can be used to allow a user to preview
the filtered event data before processing the filtered event
data. For example, the user device 320 may display a
graphical representation of the filtered event data, or other-
wise present the filtered event data to a user. The user can
then determine whether to have the observability pipeline
system 310 process the filtered event data. In general,
processing the filtered event data consumes computing
bandwidth and requires processing time, and running the
data collection job in preview mode can ensure that time and
computing resources are used appropriately and not wasted
(e.g., ensuring that resources are only deployed on filtered
event data that the user approves for processing).

At 346, after the filtered event data provided by the data
collection job in preview mode has been assessed, the data
collection job can be reconfigured. Reconfiguring the data
collection job may include, for example, modifying filter
parameters or other types of event filter criteria, selecting a
different data pipeline or observability pipeline process,
selecting a different mode (e.g., full run mode, etc.) for the
data collection job, or a combination of these and other
changes. In some cases, the data collection job is reconfig-
ured by changing only the mode, for example, changing
from preview mode to full run mode (or possibly another
mode). As such, in some cases, configuration information
for a data collection job in preview mode is received, and a
preview mode data collection job is executed; then, con-
figuration information for the same data collection job in full
run mode is received, and a full run mode data collection job
is executed. The same filtered event data may be collected by
the same data collection job in preview mode and full run
mode. In some cases, the reconfigured data collection job
remains in preview mode.

As shown in FIG. 3A, when the data collection job is
reconfigured at 346, new configuration information for a
new data collection job is generated by the user device 320,
and the process returns to 336, where the new configuration
information is provided from the user device 320 to the
observability pipeline system 310. The observability pipe-
line system 310 runs the new data collection job (at 338),
and the process continues as shown and described.

As shown in FIG. 3A, when a data collection job is run in
full run mode, the filtered event data are processed by the
observability pipeline system 310 (at 348). When the filtered
event data are processed by the observability pipeline sys-
tem 310 (at 348), the observability pipeline system 310
applies one or more observability pipeline processes to the
filtered event data, which generates pipeline output data. For
example, worker roles in the observability pipeline system
310 may generate pipeline output data by applying the
observability pipeline process 200 shown in FIG. 2, or
another type of observability pipeline process, to pipeline
input data that include the filtered event data.

In some cases, the filtered event data are processed at 348
in the same or a similar manner as the original event data

US 11,748,160 B1

17 18

5

10

15

20

25

30

35

40

45

50

55

60

65



were processed at 326, or the filtered event data may be
processed at 348 in a different manner. In some cases, the
filtered event data are processed by observability pipeline
processes that are parameterized, identified, or otherwise
specified by the data collection job (e.g., observability
pipeline processes indicated in the configuration information
received at 336). For instance, the data collection job may
specify a particular type of routing, streaming analytics and
processing, or output schema to be applied by the example
observability pipeline process 200 shown in FIG. 2.

In some cases, at 348, each worker role applies the
observability pipeline process 200 shown in FIG. 2 to the
subset of event data collected by the data collection task that
it executes. For instance, a worker role may apply the
observability pipeline process to a subset of the event data
by applying schema normalization to the subset of event
data (e.g., applying the schema normalization 220 in FIG.
2); routing the normalized subset of event data (e.g., apply-
ing the routing 222 in FIG. 2); generating structured output
data from the normalized subset of event data (e.g., applying
the streaming analytics and processing 224 in FIG. 2); and
applying output schemas to the structured output data to
generate a portion of the observability pipeline output data
(e.g., the output schemas 226 in FIG. 2). In some cases, the
schema normalization, routing, streaming analytics and pro-
cessing, output schema, or other aspects of an observability
pipeline process applied to the subset of event data are
configured or selected according to the data collection task
that collected the subset of event data from the external data
storage system.

As shown in FIG. 3A, the pipeline output data generated
at 348 may be handled in the same manner as the pipeline
output data generated at 326. At 352 and 354, the pipeline
output data generated (at 348) by processing the filtered
event data are delivered to external data destinations, which
include the data destinations 304 and the data storage 306.
The pipeline output data delivered to the data storage 306 at
354 include the filtered event data that were retrieved from
storage (at 338) and processed by the observability pipeline
system 310.

FIG. 4 is a signaling and flow diagram showing an
example load balancing process performed in an observabil-
ity pipeline system 400. The example observability pipeline
system 400 includes one or more computer nodes that
operate as a leader role 412 and multiple worker roles 414.
The observability pipeline system 400 may include addi-
tional or different features. The observability pipeline sys-
tem 400, the leader role 412, and the worker roles 414 shown
in FIG. 4 can be implemented as the observability pipeline
system 110, the leader role 112 and the worker roles 114
shown in FIG. 1, or they may be implemented in another
manner.

The example process shown in FIG. 4 may include
additional or different operations, and the operations may be
performed in another order. In some cases, one or more of
the operations can be combined, or an operation can be
divided into multiple sub-processes. Certain operations may
be iterated or repeated, for example, until a terminating
condition is reached.

In some implementations, the observability pipeline sys-
tem 400 is deployed on a distributed computer system that
includes multiple computer nodes. The computer nodes in
the distributed computer system may include a leader node
operating as the leader role 412 and multiple worker nodes
operating as the worker roles 414. In some implementations,
the observability pipeline system is deployed on a stand-
alone computer system that includes only a single computer

node. The computer node of the standalone computer system
can operate as the leader role 412 and the worker roles 414.

The example observability pipeline system 400 in FIG. 4
performs load balancing that determines how computing
workloads are distributed across computing resources. The
computing workloads can include computing jobs, comput-
ing tasks, or other types of computing workload elements.
As shown in FIG. 4, the leader role 412 performs a load
balancing process that determines how computing tasks are
distributed to the worker roles 414. For instance, the leader
role 414 may include a dispatcher (e.g., the dispatcher 116
shown in FIG. 1) or another software resource that performs
the load balancing process in connection with dispatching
computing tasks to the worker roles 114. The load balancing
process can distribute the computing workload elements
according to one or more dispatch criteria, which can be
selected, calibrated, or optimized to balance the computing
workload in a certain manner (e.g., according to certain
priorities or objectives, etc.). In some examples, the load
balancing process uses a least in-flight task dispatch crite-
rion, a round robin dispatch criterion, or another type of
dispatch criterion.

In the example shown in FIG. 4, at 420 the leader role 412
identifies computing jobs to be executed in the observability
pipeline system 400. The computing jobs each include one
or more computing tasks, and each computing task is
associated with event data to be processed by the observ-
ability pipeline system 400. In some cases, the computing
jobs and computing tasks are generated based on pipeline
input data received by the observability pipeline system 400,
and the pipeline input data may include event data from
multiple external data sources. For example, the computing
tasks may include the type of event data 202 described with
respect to FIG. 2 (e.g., logs 204, metrics 206, traces 208),
and the event data may be received from data sources (e.g.,
the data sources 102 shown in FIG. 1), data storage (e.g., the
data storage 106 shown in FIG. 1), or elsewhere.

In some instances, one or more of the computing jobs
identified at 420 are data collection jobs that include data
collection tasks. The observability pipeline system 400 may
receive configuration information that includes event filter
criteria for the data collection jobs. Based on the event filter
criteria, a data payload comprising the some or all of the
event data may be identified, for example, as described with
respect to FIGS. 3A, 3B.

At 422, one or more of the worker roles 414 request work
from the leader role 412. For example, each of the worker
roles 414 can independently send a work request to the
leader role 412. A worker role may send a work request to
indicate availability to execute a new computing task, for
instance, when the worker role has completed a computing
task.

At 424, the leader role 412 applies a dispatch criterion to
select the next computing task to be sent to each of the
worker roles 414. In an example shown in FIG. 4, the leader
role 412 dispatches computing tasks to the worker roles 414
according to a least in-flight task dispatch criteria. The least
in-flight task dispatch criteria is applied iteratively. For
instance, the leader role 412 may iterate the least in-flight
dispatch criteria upon receipt of each work request from a
worker role 414.

In some implementations, an iteration of the least in-flight
task dispatch criteria is applied at 424 when one of the
worker roles is identified as an available worker role (e.g.,
based on a job request from the worker role). Upon identi-
fying an available worker role, the leader role 412 may
identify one or more incomplete computing jobs (from the

US 11,748,160 B1

19 20

5

10

15

20

25

30

35

40

45

50

55

60

65



computing jobs initially identified at 420). The incomplete
computing jobs are the computing jobs that have one or
more unexecuted computing tasks (i.e., computing tasks that
have not been fully executed in the observability pipeline
system 400). Next, the leader role 412 selects a particular
computing job from the incomplete computing jobs.

Applying the least in-flight task dispatch criteria at 424,
the leader role 412 selects the computing job that has the
least number of in-flight computing tasks currently being
executed in the observability pipeline system. A computing
task may be considered an in-flight task when one of the
worker roles 414 is currently allocated to or is currently
executing the computing task. In an example where there are
two computing jobs identified at 420, if the worker roles 414
are currently executing two computing tasks from a first
computing job and one computing task from a second
computing job, then the second computing job has the least
number of in-flight computing tasks currently being
executed in the observability pipeline system.

In some cases, the leader role 412 includes a dispatcher or
another module that tracks (e.g., in-memory) the count of
in-flight computing tasks for each computing job. The leader
role 412 can update the count each time a computing task is
sent to or completed by a worker role 414. For instance, the
count can be tracked based on notifications (e.g., at 422, 426
or other types of notifications) communicated between the
leader role 412 and worker roles 414. In some cases, each
time a worker role 414 completes a task, the worker role 414
sends the leader role 412 a notification (e.g., the work
request 422 or another type of notification) that indicates the
computing task has been completed, and the leader role 412
then updates the count of in-flight computing tasks for the
computing job associated with the computing task that was
executed by the worker role.

After the leader role 412 has selected the computing job
with the least in-flight tasks, the leader role 412 identifies the
next computing task from the selected computing job. For
example, the selected computing job may include a number
of unexecuted computing tasks, and the next computing task
may be identified according to an ordering or prioritization
of the unexecuted computing tasks. On each iteration, after
the next computing task has been identified from the
selected computing job, the leader role 412 dispatches that
computing task to the available worker role. For example, a
particular worker role 414 may be allocated to the comput-
ing task, and the computing task may be sent to the particular
worker role 414 for execution.

At 426, the leader role 412 sends computing tasks to the
respective worker roles 414. For example, when the leader
role 412 dispatches a computing task to an available worker
role upon each iteration of applying the dispatch criteria at
424, the leader role 412 may send the computing task to the
worker role 414 that it was dispatched to.

At 428, the worker roles 414 execute the computing tasks.
Each of the worker roles 414 executes the computing tasks
that were dispatched to the respective worker role 414. In the
example shown in FIG. 4, executing each respective com-
puting task includes applying an observability pipeline pro-
cess to the event data associated with the respective com-
puting task. In some instances, each of the computing tasks
designates a subset of event data, and the worker roles 414
generate pipeline output data by executing the computing
tasks. The pipeline output data may be delivered from the
observability pipeline system 400 to external data destina-
tions (e.g., data destinations 104 shown in FIG. 1). In some
instances, one or more of the computing tasks is a data
collection task that is executed as described with respect to

FIGS. 3A, 3B, or otherwise. For instance, each respective
data collection task may be executed by communicating
with an external data storage system to obtain a subset of
filtered event data from a data payload, streaming the subset
of filtered event data to the observability pipeline process,
and applying the observability pipeline process to the subset
of filtered event data.

In some implementations, each worker role 414 may
apply the observability pipeline process 200 shown in FIG.
2 to the event data associated with the computing tasks
dispatched to the respective worker role 414. For instance,
a worker role 414 may apply the observability pipeline
process to the event data by applying schema normalization
to the event data (e.g., applying the schema normalization
220 in FIG. 2); routing the normalized event data (e.g.,
applying the routing 222 in FIG. 2); generating structured
output data from the normalized event data (e.g., applying
the streaming analytics and processing 224 in FIG. 2); and
applying output schemas to the structured output data to
generate observability pipeline output data (e.g., the output
schemas 226 in FIG. 2). The observability pipeline output
data may then be delivered to one or more external data
destinations (e.g., log analytics 250, TSDB 252, distributed
tracing 254, SIEM/UBA 256, event streaming/data lake 258,
shown in FIG. 2).

FIG. 5 is a block diagram showing an example observ-
ability pipeline system 500 that performs load balancing.
The example observability pipeline system 500 includes one
or more computer nodes that operate as a leader role 512 and
multiple worker roles 514. The observability pipeline sys-
tem 500, the leader role 512, and the worker roles 514 shown
in FIG. 5 can be implemented as the observability pipeline
system 110, the leader role 112 and the worker roles 114
shown in FIG. 1, or they may be implemented in another
manner.

In the example shown in FIG. 5, the leader role includes
a dispatcher 516, which can perform the load balancing
process shown in FIG. 4. Accordingly, the leader role 512
and worker roles 514 shown in FIG. 5 may perform the
operations of the leader role 412 and the worker roles 414
shown in FIG. 4. As shown in FIG. 5, the leader role 512
dispatches computing tasks from three computing jobs
520A, 520B, 520C, and the dispatcher 516 performs a load
balancing process that determines how the computing tasks
are distributed across the worker roles 514.

As shown in FIG. 5, each of the example worker roles 514
includes a number of worker resources 530. Each of the
worker resources 530 can execute a computing task, and the
worker role 514 may send a work request to the leader role
512 to pull a computing task when the worker role 514 has
an available worker resource 530. For each work request, the
dispatcher 516 may select a computing task according to a
dispatch criteria, and the leader role 512 can send the
selected computing task to the worker role 514 for execution
by one or more of its worker resources 530.

FIGS. 6A and 6B represent two different dispatch criteria
that the dispatcher 516 can use to dispatch computing tasks
from the three computing jobs 520A, 520B, 520C. In
particular, FIG. 6A is a utilization timeline 600 showing an
example load balancing process that uses round robin dis-
patch criteria; whereas FIG. 6B is a utilization timeline 610
showing an example load balancing process that uses least
in-flight task dispatch criteria.

To compare an example of round robin dispatch criteria
with an example of least in-flight task dispatch criteria, the
utilization timelines 600, 610 represent scheduling diagrams
of a hypothetical situation where the three computing jobs

US 11,748,160 B1

21 22

5

10

15

20

25

30

35

40

45

50

55

60

65



520A, 520B, 520C are executed by an observability pipeline
that includes six worker roles 514 pulling tasks from the
computing jobs. Here, a computing task can be considered
one unit of work, and a computing job can be considered a
collection of computing tasks. The dispatcher 516 is a
resource executed by the leader role 512 to determine which
computing job’s computing task will be run next in the
observability pipeline system 500.

In the example considered in FIGS. 6A and 6B, each
computing job has ten computing tasks. Job 520A has ten
computing tasks, each having a task duration of 10 milli-
seconds (10 ms); job 520B has ten computing tasks, each
having a task duration of 5 milliseconds (5 ms); job 520C
has ten computing tasks, each having a task duration of 1
millisecond (1 ms). The utilization timeline 600 in FIG. 6A
shows how round robin scheduling will behave with these
example computing job definitions over 20 ms. For com-
parison, the utilization timeline 610 in FIG. 6B shows how
least in-flight task scheduling will behave with the example
computing job definitions over 20 ms.

In each of the example utilization timelines shown in
FIGS. 6A and 6B, a black box indicates the start of a task,
and grey boxes indicate the duration for which the task runs.
Given that there are only six worker roles in the illustrated
example, there will only be six concurrently running tasks at
any given time; in other words, there will only ever be six
shaded boxes on any given column in the utilization time-
line. In FIG. 6A, the top section 602 shows when computing
tasks from computing job 520A are executed; the middle
section 604 shows when computing tasks from computing
job 520B are executed; and the bottom section 606 shows
when computing tasks from computing job 520C are
executed. Similarly, in FIG. 6B, the top section 612 shows
when computing tasks from computing job 520A are
executed; the middle section 614 shows when computing
tasks from computing job 520B are executed; and the
bottom section 616 shows when computing tasks from
computing job 520C are executed.

Using the round robin dispatch criteria, as shown in the
utilization timeline 600 in FIG. 6A, the number of in-flight
tasks for each job are highly variable. This means that some
computing jobs have more resources spent on them while
others are getting significantly fewer resources allocated to
them, and the computing jobs that had more in-flight tasks
also had much greater execution times for tasks. For
example, in a scenario where each computing task represents
the collection and reading of a file/object, either from
filesystem or S3, they will have highly variable execution
times by nature.

From the utilization timeline 600 shown in FIG. 6A, we
can gather the following empirical data. Under the round
robin dispatch criteria, computing job 520A typically has
about 3-4 tasks running at any given time; computing job
520B typically has about 1-2 tasks running at any given
time; and computing job 520C typically has about 0-1 tasks
running at any given time. We also see that none of the jobs
ever reaches completion due to the way the round robin
algorithm distributes resources to jobs. With this data, we
can derive a formula that approximates the average number
of in-flight tasks for a job at any given time. If we sum up
the total amount of task durations, we get 10 ms+5 ms+1
ms=16 ms. Given this, we find the following shares of time
consumed by each jobs’ tasks: job 520A time ratio: 5/8; job
520B time ratio: 5/16; job 520C time ratio 1/16. From this
we can determine the average number of tasks each job will
have in-flight at any given time by multiplying the time ratio
by the number of workers that can pull tasks:

Job 520A Average In-Flight Tasks: (5/8)*6=3.75 tasks;

Job 520B Average In-Flight Tasks: (5/16)*6=1.875 tasks;

Job 520C Average In-Flight Tasks: (1/16)*6=0.375 tasks.

From the above calculations, we found the overall for-

mula for determining a computing job’s average in-flight

task count under the round robin dispatch criteria used in the

example shown in FIG. 6A would be:

avg_in_flight=(job_task_duration/total_task_dura-

tions)*num_workers.

Using a round robin algorithm, while fair in the sense that

it will not starve any one job, can be unfair when it

over-allocates resources to a job made up of tasks that have

longer execution times. Round robin will only be fair in a

homogenous environment where the machines performing

the work are similar, the jobs have a similar number of tasks,

and the tasks all have similar execution times.

By contrast, as shown in FIG. 6B, using a least number of
in-flight tasks job scheduling process allows observability
pipeline system 500 to fairly and equally load balance work
across all of the running jobs. The utilization timeline 610 in
FIG. 6B shows that applying a least in-flight task dispatch
criteria can load balance the number of tasks being run per
job. The idea behind the least in-flight task scheduler is to
allocate the next available computing resource to the com-
puting job with the least number of current in-flight com-
puting tasks. Doing this allows us to keep an equitable
number of in-flight tasks across all the running computing
jobs, so all of the computing jobs progress at a similar rate
regardless of how long their computing tasks actually run.

The least in-flight task dispatch criteria also takes into
account scaling up and down depending on the number of
running jobs. When a new job is spawned and has no
resources available to it, the dispatcher 516 applying the
least in-flight task dispatch criteria will handle balancing out
resources to the new job. When computing resources are
freed up from the previously running jobs, they will auto-
matically allocate to the new job with no resources until the
number of in-flight tasks balance out across all jobs in the
system. The same logic applies when one of the computing
jobs is completed; the computing resources it was using will
be distributed equally to the remaining computing jobs that
the dispatcher 516 is handling.

As seen by comparing FIGS. 6A and 6B, dispatching the
computing tasks according to the least in-flight task dispatch
criteria (in FIG. 6B) causes computing jobs to be completed
in less time compared to dispatching the computing tasks
according to a round robin dispatch criteria (in FIG. 6A). For
example, computing job 520C is completed in 17 ms in FIG.
6A, versus 4 ms in FIG. 6B; and computing job 520B is
completed in 19 ms in FIG. 6A, versus 20 ms in FIG. 6B.
This is because the computing tasks in the different com-
puting jobs have disparate execution times (the computing
tasks in job 520C have shorter execution times than the
computing tasks in job 520B; and the computing tasks in job
520B have shorter execution times than the computing tasks
in job 520A).

As shown in FIG. 6B, using the least in-flight tasks
scheduling, both job 520B and 520C were able to complete
within 20 ms of execution time, which is something that was
not accomplished by the round robin scheduling represented
in FIG. 6A. In this example, we can see how the least
in-flight task dispatch criteria can fairly load balance the
tasks being run across each of the jobs instead of gravitating
resources towards the job with longer running tasks. The
overall formula for determining a computing job’s average

US 11,748,160 B1

23 24

5

10

15

20

25

30

35

40

45

50

55

60

65



in-flight task count under the least in-flight tasks dispatch
criteria used in the example shown in FIG. 6B would be:

avg_in_flight=num_workers/num_jobs,

regardless of task duration. The average in-flight task count
may vary in certain situations.

FIG. 7 is a block diagram showing an example of a
computer system 700 that includes a data processing appa-
ratus and one or more computer-readable storage devices.
The term “data-processing apparatus” encompasses all kinds
of apparatus, devices, nodes, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, a system on a chip, or multiple ones, or
combinations, of the foregoing, e.g. processor 710. The
apparatus can include special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation specific integrated circuit). The apparatus can also
include, in addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, a cross-
platform runtime environment, a virtual machine, or a
combination of one or more of them.

A computer program (also known as a program, software,
software application, script, or code), e.g., computer pro-
gram 724, can be written in any form of programming
language, including compiled or interpreted languages,
declarative or procedural languages, and it can be deployed
in any form, including as a stand-alone program or as a
module, component, subroutine, object, or other unit suit-
able for use in a computing environment. A computer
program may, but need not, correspond to a file in a file
system. A program can be stored in a portion of a file that
holds other programs or data (e.g., one or more scripts stored
in a markup language document), in a single file dedicated
to the program, or in multiple coordinated files (e.g., files
that store one or more modules, sub programs, or portions of
code). A computer program can be deployed to be executed
on one computer or on multiple computers that are located
at one site or distributed across multiple sites and intercon-
nected by a communication network.

Some of the processes and logic flows described in this
specification can be performed by one or more program-
mable processors, e.g. processor 710, executing one or more
computer programs to perform actions by operating on input
data and generating output. The processes and logic flows
can also be performed by, and apparatus can also be imple-
mented as, special purpose logic circuitry, e.g., an FPGA
(field programmable gate array) or an ASIC (application
specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and processors of any kind of
digital computer. Generally, a processor will receive instruc-
tions and data from a read-only memory or a random-access
memory or both, e.g. memory 720. Elements of a computer
can include a processor that performs actions in accordance
with instructions, and one or more memory devices that
store the instructions and data. A computer may also include,
or be operatively coupled to receive data from or transfer
data to, or both, one or more mass storage devices for storing
data, e.g., magnetic disks, magneto optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., a phone, an electronic appliance, a mobile audio or
video player, a game console, a Global Positioning System
(GPS) receiver, or a portable storage device (e.g., a universal

serial bus (USB) flash drive). Devices suitable for storing

computer program instructions and data include all forms of

non-volatile memory, media and memory devices, including

by way of example semiconductor memory devices (e.g.,

EPROM, EEPROM, flash memory devices, and others),

magnetic disks (e.g., internal hard disks, removable disks,

and others), magneto optical disks, and CD ROM and

DVD-ROM disks. In some cases, the processor and the

memory can be supplemented by, or incorporated in, special

purpose logic circuitry.

The example power unit 740 provides power to the other

components of the computer system 700. For example, the

other components may operate based on electrical power

provided by the power unit 740 through a voltage bus or

other connection. In some implementations, the power unit

740 includes a battery or a battery system, for example, a

rechargeable battery. In some implementations, the power

unit 740 includes an adapter (e.g., an AC adapter) that

receives an external power signal (from an external source)

and coverts the external power signal to an internal power

signal conditioned for a component of the computer system
700. The power unit 740 may include other components or
operate in another manner.

To provide for interaction with a user, operations can be
implemented on a computer having a display device, e.g.
display 750, (e.g., a monitor, a touchscreen, or another type
of display device) for displaying information to the user and
a keyboard and a pointing device (e.g., a mouse, a trackball,
a tablet, a touch sensitive screen, or another type of pointing
device) by which the user can provide input to the computer.
Other kinds of devices can be used to provide for interaction
with a user as well; for example, feedback provided to the
user can be any form of sensory feedback, e.g., visual
feedback, auditory feedback, or tactile feedback; and input
from the user can be received in any form, including
acoustic, speech, or tactile input. In addition, a computer can
interact with a user by sending documents to, and receiving
documents from, a device that is used by the user; for
example, by sending web pages to a web browser on a user’s
client device in response to requests received from the web
browser.

The computer system 700 may include a single computing
device, or multiple computers that operate in proximity or
generally remote from each other and typically interact
through a communication network, e.g. via interface 730.
Examples of communication networks include a local area
network (“LAN”) and a wide area network (“WAN”), an
inter-network (e.g., the Internet), a network comprising a
satellite link, and peer-to-peer networks (e.g., ad hoc peer-
to-peer networks). A relationship of client and server may
arise by virtue of computer programs running on the respec-
tive computers and having a client-server relationship to
each other.

The example interface 730 may provide communication
with other systems or devices. In some cases, the interface
730 includes a wireless communication interface that pro-
vides wireless communication under various wireless pro-
tocols, such as, for example, Bluetooth, Wi-Fi, Near Field
Communication (NFC), GSM voice calls, SMS, EMS, or
MMS messaging, wireless standards (e.g., CDMA, TDMA,
PDC, WCDMA, CDMA2000, GPRS) among others. Such
communication may occur, for example, through a radio-
frequency transceiver or another type of component. In some
cases, the interface 730 includes a wired communication
interface (e.g., USB, Ethernet) that can be connected to one
or more input/output devices, such as, for example, a key-

US 11,748,160 B1

25 26

5

10

15

20

25

30

35

40

45

50

55

60

65



board, a pointing device, a scanner, or a networking device
such as a switch or router, for example, through a network
adapter.

In a general aspect, data payloads from external data
storage are processed in an observability pipeline.

In a first example, an observability pipeline system is
deployed on one or more computer nodes operating as a
leader role and a plurality of worker roles. Configuration
information for a data collection job are received. The
configuration information includes event filter criteria. By
operation of the leader role, a data discovery task is gener-
ated based on the configuration information. By operation of
one of the worker roles, the data discovery task is executed.
Executing the data discovery task includes communicating
with an external data storage system to identify a data
payload that is stored on the external data storage system and
contains event data that meet the event filter criteria. By
operation of the leader role, a plurality of data collection
tasks are generated based on the data payload identified by
the execution of the data discovery task. By operation of one
or more of the worker roles, the plurality of data collection
tasks are executed. Executing each respective data collection
task includes: communicating with the external data storage
to obtain a subset of filtered event data from the data
payload, each subset of filtered event data comprising a
respective portion of the event data that meet the event filter
criteria; streaming the subset of filtered event data to an
observability pipeline process; and applying the observabil-
ity pipeline process to the subset of filtered event data.

Implementations of the first example may include one or
more of the following features. The configuration informa-
tion is received from a user device, and the event filter
criteria are based on input received through a user interface
of the user device. The observability pipeline process is
selected through the user interface of the user device and
indicated in the configuration information from the user
device.

Implementations of the first example may include one or
more of the following features. The data payload is a set of
files, each of the plurality of data collection tasks identifies
a respective one of the files, and executing a data collection
task includes communicating with the external data storage
system to obtain a subset of filtered event data from the file
identified by the data collection task.

Implementations of the first example may include one or
more of the following features. The data payload is a set of
files, a first data collection task of the plurality of data
collection tasks identifies multiple files, and executing the
first data collection task comprises communicating with the
external data storage system to obtain a subset of filtered
event data from the multiple files identified by the first data
collection task. Communicating with the external data stor-
age system to obtain a subset of filtered event data includes
streaming the subset of filtered event data from the external
data storage system to the observability pipeline system
(e.g., to a computer node operating as a worker role).

Implementations of the first example may include one or
more of the following features. Applying the observability
pipeline process to the subset of filtered event data includes:
applying schema normalization to the subset of filtered event
data to generate normalized event data; routing the normal-
ized event data to a streaming analytics and processing
engine; generating structured data from the normalized
event data by operation of the streaming analytics and
processing engine; and applying one or more output sche-
mas to the structured data to generate observability pipeline
output data for one or more external data destinations.

Implementations of the first example may include one or
more of the following features. The observability pipeline
system is deployed on a distributed computer system com-
prising a leader node operating as the leader role and a
plurality of worker nodes operating as the worker roles.

Implementations of the first example may include one or
more of the following features. The observability pipeline
system is deployed on a standalone computer system com-
prising a single computer operating as the leader role and the
plurality of worker roles.

Implementations of the first example may include one or
more of the following features. The data collection job is a
full run mode data collection job, and prior to receiving the
configuration information for the full run mode data collec-
tion job the observability pipeline system receives configu-
ration information for a preview mode data collection job.
The leader role generates a preview data discovery task
based on the configuration information for the preview mode
data collection job. One of the worker roles executes the
preview data discovery task. The leader role generates a
plurality of preview data collection tasks based on a data
payload identified by the execution of the preview data
discovery task. One or more of the worker roles execute the
plurality of preview data collection tasks. Executing each
respective preview data collection task includes: communi-
cating with the external data storage to obtain a subset of
filtered event data from the data payload identified by the
execution of the preview data discovery task; and sending,
from the observability pipeline system to a user device, the
filtered event data obtained by the execution of the plurality
of preview data collection tasks.

Implementations of the first example may include one or
more of the following features. Prior to receiving the con-
figuration information for the data collection job, the observ-
ability pipeline system receives pipeline input data compris-
ing event data from a plurality of data sources. The
observability pipeline system generates pipeline output data
by applying one or more observability pipeline processes to
the event data from the plurality of data sources. The
pipeline output data are delivered to a plurality of external
data destinations. Delivering the pipeline output data com-
prises storing the data payload on the external data storage
system.

In a second example, an observability pipeline system
includes one or more computer processors that perform one
or more operations of the first example. In a third example,
a non-transitory computer-readable medium comprises
instructions that are operable when executed by data pro-
cessing apparatus to perform one or more operations of the
first example.

In another general aspect, load balancing is applied across
compute resources in an observability pipeline.

In a fourth example, an observability pipeline system is
deployed on one or more computer nodes operating as a
leader role and a plurality of worker roles. A plurality of
computing jobs each include a plurality of computing tasks.
Each of the computing tasks is associated with event data to
be processed by the observability pipeline system. The
leader role dispatches the plurality of computing tasks to the
plurality of worker roles according to a least in-flight task
dispatch criteria. Dispatching the plurality of computing
tasks according to the least in-flight task dispatch criteria
comprises, iteratively: identifying one of the plurality of
worker roles as an available worker role; identifying, from
the plurality of computing jobs, one or more incomplete
computing jobs comprising one or more computing tasks
that have not been executed in the observability pipeline

US 11,748,160 B1

27 28

5

10

15

20

25

30

35

40

45

50

55

60

65



system; selecting, from the one or more incomplete com-

puting jobs, a computing job that has the least number of

in-flight computing tasks currently being executed in the

observability pipeline system; identifying a next computing

task from the selected computing job; and dispatching the

next computing task to the available worker role. The

worker roles execute the computing tasks dispatched to the

respective worker roles. Executing each respective comput-

ing task includes applying an observability pipeline process

to the event data associated with the respective computing

task.

Implementations of the fourth example may include one

or more of the following features. The observability pipeline

system receives pipeline input data comprising at least a

portion of the event data from a plurality of external data

sources. At least a subset of the plurality of computing jobs

are generated based on the pipeline input data. Each of the

computing tasks comprises a respective subset of the event

data, and the worker roles generate pipeline output data by

executing the computing tasks. The pipeline output data are

delivered from the observability pipeline system to a plu-
rality of external data destinations.

Implementations of the fourth example may include one
or more of the following features. One or more of the
computing jobs are data collection jobs. Each of the data
collection jobs comprises a plurality of data collection tasks.
Configuration information includes event filter criteria for
the data collection jobs. Based on the event filter criteria, a
data payload comprising the some or all of the event data is
identified. Executing each respective data collection task
includes: communicating with an external data storage sys-
tem to obtain a subset of filtered event data from the data
payload, each subset of filtered event data comprising a
respective portion of the event data; streaming the subset of
filtered event data to the observability pipeline process; and
applying the observability pipeline process to the subset of
filtered event data.

Implementations of the fourth example may include one
or more of the following features. Applying the observabil-
ity pipeline process to the event data includes: applying
schema normalization to the event data to generate normal-
ized event data; routing the normalized event data to a
streaming analytics and processing engine; generating struc-
tured output data from the normalized event data by opera-
tion of the streaming analytics and processing engine; apply-
ing output schemas to the structured output data to generate
observability pipeline output data for a plurality of external
data destinations.

Implementations of the fourth example may include one
or more of the following features. The available worker role
is identified based on a work request from the available
worker role. Dispatching the next computing task to the
available worker role includes sending the next computing
task from the leader role to the available worker role in
response to the work request.

Implementations of the fourth example may include one
or more of the following features. The plurality of comput-
ing jobs includes a first computing job and a second com-
puting job (and possibly additional computing jobs). Dis-
patching the plurality of computing tasks according to the
least in-flight task dispatch criteria causes the first comput-
ing job to be completed in less time compared to dispatching
the plurality of computing tasks according to a round robin
dispatch criteria. The first computing job contains a first
plurality of computing tasks; the second computing job
contains a second plurality of computing tasks; and the first

plurality of computing tasks all have shorter execution times
than the second plurality of computing tasks.

Implementations of the fourth example may include one
or more of the following features. The observability pipeline
system is deployed on a distributed computer system that
includes a leader node operating as the leader role and a
plurality of worker nodes operating as the worker roles.

Implementations of the fourth example may include one
or more of the following features. The observability pipeline
system is deployed on a standalone computer system com-
prising a single computer operating as the leader role and the
plurality of worker roles.

In a fifth example, an observability pipeline system
includes one or more processors that perform one or more
operations of the fourth example. In a sixth example, a
non-transitory computer-readable medium comprises
instructions that are operable when executed by data pro-
cessing apparatus to perform one or more operations of the
fourth example.

While this specification contains many details, these
should not be understood as limitations on the scope of what
may be claimed, but rather as descriptions of features
specific to particular examples. Certain features that are
described in this specification or shown in the drawings in
the context of separate implementations can also be com-
bined. Conversely, various features that are described or
shown in the context of a single implementation can also be
implemented in multiple embodiments separately or in any
suitable subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
components in the implementations described above should
not be understood as requiring such separation in all imple-
mentations, and it should be understood that the described
program components and systems can generally be inte-
grated together in a single product or packaged into multiple
products.

A number of embodiments have been described. Never-
theless, it will be understood that various modifications can
be made. Accordingly, other embodiments are within the
scope of the following claims.

What is claimed is:
1. A method of load balancing across computing resources

in an observability pipeline system, the method comprising:
in an observability pipeline system deployed on one or

more computer nodes operating in a leader role and a
plurality of worker roles, identifying a plurality of
computing jobs, each of the computing jobs comprising
a plurality of computing tasks, each of the computing
tasks associated with event data to be processed by the
observability pipeline system;

by operation of the leader role, dispatching the plurality of
computing tasks to the plurality of worker roles accord-
ing to a least in-flight task dispatch criterion, wherein
dispatching the plurality of computing tasks according
to the least in-flight task dispatch criterion comprises,
iteratively:
identifying one of the plurality of worker roles as an

available worker role;
identifying, from the plurality of computing jobs, one

or more incomplete computing jobs comprising one

US 11,748,160 B1

29 30

5

10

15

20

25

30

35

40

45

50

55

60

65



or more computing tasks that have not been executed
in the observability pipeline system;

selecting, from the one or more incomplete computing
jobs, a computing job that has the least number of
in-flight computing tasks currently being executed in
the observability pipeline system;

identifying a next computing task from the selected
computing job; and

dispatching the next computing task to the available
worker role;

by operation of the worker roles in the observability
pipeline system, executing the computing tasks dis-
patched to the respective worker roles, wherein execut-
ing each respective computing task comprises applying
an observability pipeline process to the event data
associated with the respective computing task.

2. The method of claim 1, comprising:
at the observability pipeline system, receiving pipeline

input data comprising at least a portion of the event data
from a plurality of external data sources;

generating at least a subset of the plurality of computing
jobs based on the pipeline input data, wherein each of
the computing tasks comprises a respective subset of
the event data, and the worker roles generate pipeline
output data by executing the computing tasks; and

delivering the pipeline output data from the observability
pipeline system to a plurality of external data destina-
tions.

3. The method of claim 1, wherein one or more of the
computing jobs are data collection jobs, each of the data
collection jobs comprises a plurality of data collection tasks,
and the method comprises:

receiving configuration information comprising event fil-
ter criteria for the data collection jobs; and

based on the event filter criteria, identifying a data pay-
load comprising at least a portion of the event data,

wherein executing the computing tasks comprises execut-
ing each respective data collection task comprising:
communicating with an external data storage system to

obtain a subset of filtered event data from the data
payload, each subset of filtered event data compris-
ing a respective portion of the event data; and

streaming the subset of filtered event data to the observ-
ability pipeline process.

4. The method of claim 1, wherein applying the observ-
ability pipeline process to the event data comprises:

applying schema normalization to the event data to gen-
erate normalized event data;

routing the normalized event data to a streaming analytics
and processing module;

generating structured output data from the normalized
event data by operation of the streaming analytics and
processing module; and

applying output schemas to the structured output data to
generate observability pipeline output data for a plu-
rality of external data destinations.

5. The method of claim 1, wherein the available worker
role is identified based on a work request from the available
worker role, and dispatching the next computing task to the
available worker role comprises sending the next computing
task from the leader role to the available worker role in
response to the work request.

6. The method of claim 1, wherein:
the plurality of computing jobs comprises a first comput-

ing job and a second computing job, and
dispatching the plurality of computing tasks according to

the least in-flight task dispatch criterion causes the first

computing job to be completed in less time compared
to dispatching the plurality of computing tasks accord-
ing to a round robin dispatch criterion.

7. The method of claim 6, wherein:
the first computing job comprises a first plurality of

computing tasks,
the second computing job comprises a second plurality of

computing tasks, and
the first plurality of computing tasks all have shorter

execution times than the second plurality of computing
tasks.

8. The method of claim 1, wherein the observability
pipeline system is deployed on a distributed computer
system comprising a leader node operating as the leader role
and a plurality of worker nodes operating as the worker
roles.

9. The method of claim 1, wherein the observability
pipeline system is deployed on a standalone computer
system comprising a single computer node operating as the
leader role and the plurality of worker roles.

10. An observability pipeline system comprising one or
more computer nodes that operate a leader role and a
plurality of worker roles, the one or more computer nodes
comprising:

one or more processors; and
memory storing instructions that, when executed by the

one or more processors, cause the one or more proces-
sors to perform operations comprising:
identifying a plurality of computing jobs, each of the

computing jobs comprising a plurality of computing
tasks, each of the computing tasks associated with
event data to be processed by the observability
pipeline system;

by operation of the leader role, dispatching the plurality
of computing tasks to the plurality of worker roles
according to a least in-flight task dispatch criterion,
wherein dispatching the plurality of computing tasks
according to the least in-flight task dispatch criterion
comprises, iteratively:
identifying one of the plurality of worker roles as an

available worker role;
identifying, from the plurality of computing jobs,

one or more incomplete computing jobs compris-
ing one or more computing tasks that have not
been executed in the observability pipeline sys-
tem;

selecting, from the one or more incomplete comput-
ing jobs, a computing job that has the least number
of in-flight computing tasks currently being
executed in the observability pipeline system;

identifying a next computing task from the selected
computing job; and

dispatching the next computing task to the available
worker role;

by operation of the worker roles in the observability
pipeline system, executing the computing tasks dis-
patched to the respective worker roles, wherein
executing each respective computing task comprises
applying an observability pipeline process to the
event data associated with the respective computing
task.

11. The system of claim 10, comprising:
at the observability pipeline system, receiving pipeline

input data comprising at least a portion of the event data
from a plurality of external data sources;

generating at least a subset of the plurality of computing
jobs based on the pipeline input data, wherein each of

US 11,748,160 B1

31 32

5

10

15

20

25

30

35

40

45

50

55

60

65



the computing tasks comprises a respective subset of
the event data, and the worker roles generate pipeline
output data by executing the computing tasks; and

delivering the pipeline output data from the observability
pipeline system to a plurality of external data destina-
tions.

12. The system of claim 10, wherein one or more of the
computing jobs are data collection jobs, each of the data
collection jobs comprises a plurality of data collection tasks,
and the operations comprise:

receiving configuration information comprising event fil-
ter criteria for the data collection jobs; and

based on the event filter criteria, identifying a data pay-
load comprising at least a portion of the event data,

wherein executing the computing tasks comprises execut-
ing each respective data collection task comprising:
communicating with an external data storage system to

obtain a subset of filtered event data from the data
payload, each subset of filtered event data compris-
ing a respective portion of the event data; and

streaming the subset of filtered event data to the observ-
ability pipeline process.

13. The system of claim 10, wherein applying the observ-
ability pipeline process to the event data comprises:

applying schema normalization to the event data to gen-
erate normalized event data;

routing the normalized event data to a streaming analytics
and processing module;

generating structured output data from the normalized
event data by operation of the streaming analytics and
processing module; and

applying output schemas to the structured output data to
generate observability pipeline output data for a plu-
rality of external data destinations.

14. The system of claim 10, wherein the available worker
role is identified based on a work request from the available
worker role, and dispatching the next computing task to the
available worker role comprises sending the next computing
task from the leader role to the available worker role in
response to the work request.

15. The system of claim 10, wherein:
the plurality of computing jobs comprises a first comput-

ing job and a second computing job, and
dispatching the plurality of computing tasks according to

the least in-flight task dispatch criterion causes the first
computing job to be completed in less time compared
to dispatching the plurality of computing tasks accord-
ing to a round robin dispatch criterion.

16. The system of claim 15, wherein:
the first computing job comprises a first plurality of

computing tasks,
the second computing job comprises a second plurality of

computing tasks, and
the first plurality of computing tasks all have shorter

execution times than the second plurality of computing
tasks.

17. The system of claim 10, wherein the observability
pipeline system comprises a distributed computer system
comprising a leader node that operates as the leader role and
a plurality of worker nodes that operate as the worker roles.

18. The system of claim 10, wherein the observability

pipeline system comprises a standalone computer system

comprising a single computer node operating as the leader

role and the plurality of worker roles.

19. A non-transitory computer-readable medium compris-

ing instructions that are operable when executed by data

processing apparatus to perform operations comprising:

defining a leader role and a plurality of worker roles of an

observability pipeline system;

identifying a plurality of computing jobs, each of the

computing jobs comprising a plurality of computing

tasks, each of the computing tasks associated with

event data to be processed by the observability pipeline

system;

by operation of the leader role, dispatching the plurality of

computing tasks to the plurality of worker roles accord-

ing to a least in-flight task dispatch criterion, wherein

dispatching the plurality of computing tasks according

to the least in-flight task dispatch criterion comprises,

iteratively:

identifying one of the plurality of worker roles as an

available worker role;

identifying, from the plurality of computing jobs, one

or more incomplete computing jobs comprising one

or more computing tasks that have not been executed

in the observability pipeline system;

selecting, from the one or more incomplete computing

jobs, a computing job that has the least number of

in-flight computing tasks currently being executed in

the observability pipeline system;

identifying a next computing task from the selected

computing job; and

dispatching the next computing task to the available
worker role;

by operation of the worker roles in the observability
pipeline system, executing the computing tasks dis-
patched to the respective worker roles, wherein execut-
ing each respective computing task comprises applying
an observability pipeline process to the event data
associated with the respective computing task.

20. The non-transitory computer-readable medium of
claim 19, wherein one or more of the computing jobs are
data collection jobs, each of the data collection jobs com-
prises a plurality of data collection tasks, and the operations
comprise:

receiving configuration information comprising event fil-
ter criteria for the data collection jobs; and

based on the event filter criteria, identifying a data pay-
load comprising the some or all of the event data,

wherein executing each respective data collection task
comprises:
communicating with an external data storage system to

obtain a subset of filtered event data from the data
payload, each subset of filtered event data compris-
ing a respective portion of the event data;

streaming the subset of filtered event data to the observ-
ability pipeline process.

∗ ∗ ∗ ∗ ∗

US 11,748,160 B1

33 34

5

10

15

20

25

30

35

40

45

50

55


	E_Grant_Covers_All_508 5
	E_Grant_Covers_All_508 6

