
To Promote the Progress of Science and Useful Arts

The Director
of the United States Patent and Trademark Office has received

an application for a patent for a new and useful invention. The title
and description of the invention are enclosed. The requirements
of law have been complied with, and it has been determined that

a patent on the invention shall be granted under the law.

Therefore, this United States

grants to the person(s) having title to this patent the right to exclude others from making,
using, offering for sale, or selling the invention throughout the United States of America or
importing the invention into the United States of America, and if the invention is a process,
of the right to exclude others from using, offering for sale or selling throughout the United
States of America, products made by that process, for the term set forth in 35 U.S.C. 154(a)(2)
or (c)(1), subject to the payment of maintenance fees as provided by 35 U.S.C. 41(b). See the
Maintenance Fee Notice on the inside of the cover.

Director of the United States Patent and Trademark Office

Maintenance Fee Notice
If the application for this patent was filed on or after December 12, 1980, maintenance fees
are due three years and six months, seven years and six months, and eleven years and six
months after the date of this grant, or within a grace period of six months thereafter upon
payment of a surcharge as provided by law. The amount, number and timing of the mainte-
nance fees required may be changed by law or regulation. Unless payment of the applicable
maintenance fee is received in the United States Patent and Trademark Office on or before
the date the fee is due or within a grace period of six months thereafter, the patent will expire
as of the end of such grace period.

Patent Term Notice
If the application for this patent was filed on or after June 8, 1995, the term of this patent
begins on the date on which this patent issues and ends twenty years from the filing date of
the application or, if the application contains a specific reference to an earlier filed applica-
tion or applications under 35 U.S.C. 120, 121, 365(c), or 386(c), twenty years from the filing date
of the earliest such application (“the twenty-year term”), subject to the payment of mainte-
nance fees as provided by 35 U.S.C. 41(b), and any extension as provided by 35 U.S.C. 154(b) or
156 or any disclaimer under 35 U.S.C. 253.

If this application was filed prior to June 8, 1995, the term of this patent begins on the date
on which this patent issues and ends on the later of seventeen years from the date of the
grant of this patent or the twenty-year term set forth above for patents resulting from appli-
cations filed on or after June 8, 1995, subject to the payment of maintenance fees as provided
by 35 U.S.C. 41(b) and any extension as provided by 35 U.S.C. 156 or any disclaimer under
35 U.S.C. 253.

Form PTO-377C (Rev 09/17)

(54) EDGE-BASED DATA COLLECTION SYSTEM
FOR AN OBSERVABILITY PIPELINE
SYSTEM

(71) Applicant: Cribl, Inc., San Francisco, CA (US)

(72) Inventors: Paul Avery Dugas, Canton, GA (US);
Dritan Bitincka, Edgewater, NJ (US);
Ledion Bitincka, San Francisco, CA
(US)

(73) Assignee: Cribl, Inc., San Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 18/167,434

(22) Filed: Feb. 10, 2023

(65) Prior Publication Data

US 2023/0259438 A1 Aug. 17, 2023

Related U.S. Application Data

(60) Provisional application No. 63/310,901, filed on Feb.
16, 2022, provisional application No. 63/309,905,
filed on Feb. 14, 2022.

(51) Int. Cl.
G06F 15/16 (2006.01)
G06F 11/30 (2006.01)
G06F 11/34 (2006.01)

(52) U.S. Cl.
CPC G06F 11/3072 (2013.01); G06F 11/3409

(2013.01)

(58) Field of Classification Search
CPC G06F 11/3072; G06F 11/3409
USPC .. 709/224
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,587,725 B2 * 9/2009 Morrison G06F 9/54
719/330

8,086,912 B2 * 12/2011 Bartels G06F 11/3476
714/55

8,266,496 B2 9/2012 Flynn et al.
8,447,721 B2 5/2013 Eshleman et al.

(Continued)

OTHER PUBLICATIONS

Dugas , et al., “About Edge—Cribl Docs”, online documentation

published by Cribl, Inc. (https://docs.cribl.io/edge/), Feb. 15, 2022,

238 pgs.

(Continued)

Primary Examiner — Moustafa M Meky

(74) Attorney, Agent, or Firm — Henry Patent Law Firm
PLLC

(57) ABSTRACT

In some aspects, an edge-based data collection system
discovers, collects, processes, and forwards data in an
observability pipeline system. In some implementations, an
edge agent of the observability pipeline system runs on a
computer node. The edge agent identifies processes running
on the computer node; identifies files on the computer node
that the processes have opened for writing; accesses log
discovery parameters of the observability pipeline system;
selects a plurality of files from the identified files according
to the log discovery parameters; generates a list of discov-
ered log files that includes a path and a name for each of the
plurality of files; adds the list of discovered log files to a list
of monitored log files to be monitored by the observability
pipeline system; and then monitors the plurality of files to
generate input for the observability pipeline system.

24 Claims, 6 Drawing Sheets

US011921602B2

(12) United States Patent (10) Patent No.: US 11,921,602 B2
Dugas et al. (45) Date of Patent: Mar. 5, 2024

(56) References Cited

U.S. PATENT DOCUMENTS

9,464,014 B2 * 10/2016 Modarresi B01J 8/0453
9,767,171 B2 * 9/2017 Russell G06F 16/353
9,800,455 B1 * 10/2017 Upshur G06F 11/00

10,135,705 B2 11/2018 Asenjo et al.
10,503,623 B2 12/2019 Keller
10,565,093 B1 2/2020 Herrin et al.
10,592,521 B2 * 3/2020 Russell G06F 11/0766
10,732,962 B1 * 8/2020 Florescu G06F 11/0706
10,887,159 B2 * 1/2021 Hughes H04L 43/0811
10,996,878 B2 5/2021 Das et al.
11,308,071 B2 4/2022 Armbrust et al.
11,366,713 B2 * 6/2022 Honnappa G06F 11/3636
11,461,334 B2 * 10/2022 Bhattacharjee H04L 43/08
11,500,751 B2 11/2022 Kumarasamy et al.
11,663,219 B1 * 5/2023 Profirovic G06F 16/2457

707/713
11,727,025 B2 * 8/2023 Ferrar G06F 11/0766

707/811
2018/0124098 A1 5/2018 Carver et al.
2018/0365096 A1 12/2018 Mamillapalli et al.
2019/0042705 A1 * 2/2019 Zheng G16B 20/30
2020/0084086 A1 3/2020 Gupta et al.
2020/0092180 A1 3/2020 Bajaj et al.

OTHER PUBLICATIONS

WIPO, International Search Report and Written Opinion issued in

Application No. PCT/US2023/062373 dated May 30, 2023, 9 pages.
Treat, Tyler , “Microservice Observability, Part 2: Evolutionary
Patterns for Solving Observability Problems”, Brave New Geek,
Introspections of a software engineer, Jan. 3, 2020, 13 pages.

* cited by examiner

US 11,921,602 B2
Page 2

U.S. Patent Mar. 5, 2024 Sheet 1 of 6 US 11,921,602 B2

U.S. Patent Mar. 5, 2024 Sheet 2 of 6 US 11,921,602 B2

U.S. Patent Mar. 5, 2024 Sheet 3 of 6 US 11,921,602 B2

U.S. Patent Mar. 5, 2024 Sheet 4 of 6 US 11,921,602 B2

U.S. Patent Mar. 5, 2024 Sheet 5 of 6 US 11,921,602 B2

U.S. Patent Mar. 5, 2024 Sheet 6 of 6 US 11,921,602 B2

EDGE-BASED DATA COLLECTION SYSTEM

FOR AN OBSERVABILITY PIPELINE

SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 63/309,905, filed Feb. 14, 2022, entitled
“Edge-based Data Collection System for an Observability
Pipeline System;” and U.S. Provisional Patent Application
No. 63/310,901, filed Feb. 16, 2022, entitled “Edge-based
Data Collection System for an Observability Pipeline Sys-
tem.” The above-referenced priority documents are incor-
porated herein by reference in their entireties.

BACKGROUND

The following description relates to edge-based data
collection for an observability pipeline system.

Observability pipelines are used to route and process data
in a number of contexts. For example, observability pipe-
lines can provide unified routing of various types of machine
data to multiple destinations, while adapting data shapes and
controlling data volumes. In some implementations, observ-
ability pipelines allow an organization to interrogate
machine data from its environment without knowing in
advance the questions that will be asked. Observability
pipelines may also provide monitoring and alerting func-
tions, which allow systematic observation of data for known
conditions that require specific action or attention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing aspects of an example
computing environment.

FIG. 2 is a block diagram showing aspects of an example
data processing engine.

FIG. 3 is a flow chart showing aspects of an example
process performed by an edge agent of an observability
pipeline system.

FIG. 4A is a schematic diagram showing aspects of an
example computer node of an observability pipeline system.

FIG. 4B is a schematic diagram showing aspects of an
example observability pipeline system.

FIG. 5 is a block diagram showing an example computer
system.

DETAILED DESCRIPTION

In some aspects of what is described here, log files on a
computer node are discovered, data from the log files are
extracted, collected, and routed by operation of an edge-
based data collection system. In some implementations, the
edge-based data collection system operates as an edge agent
on a computer node or another type of data source in a
computing environment. For example, the edge-based data
collection system may operate on a computer device or
system where processes run and data originates in a network
(e.g., a server, server cluster, a Raspberry Pi device, a PC, a
smart device, etc.).

In some cases, the edge-based data collection system
includes edge agents of an observability pipeline system
installed on multiple end-point devices or other types of
computer nodes. In some cases, the edge-based data collec-
tion system provides a user interface that allows a user to
customize what types of log files are to be monitored by the

observability pipeline system. In some cases, the edge-based
data collection system may further discover the log files and
extract data from the discovered log files. The discovered
log files may be added to a list which includes log files to be
monitored by the observability pipeline system. In some
cases, the user interface of the edge-based data collection
system may further allow a user to customize how the data
are extracted, formatted, or processed. Based on the list of
monitored log files, the edge-based data collection system
generates observability pipeline input data for further pro-
cessing in the observability pipeline system. In some cases,
the edge-based data collection system can route data from
the discovered log files to data destinations (e.g., a data
storage or a user device).

In some implementations, the methods and techniques
presented here can provide advantages over existing tech-
nologies. For example, an edge-based data collection system
can be used for microservice architectures and sprawling
environments. The edge-based data collection system may
collect, process, and forward data with flexibility and low
resource overhead. The edge-based data collection system
may have a low cost of ownership, and may be scalable and
centrally managed, configured, and version controlled for
easy expansion. The edge-based data collection system can
be user-experience oriented, for example, allowing users
(e.g., through a user interface) to specify log discovery
parameters for filtering and selecting log files; to specify and
optimize data collection parameters for obtaining data from
the selected log files; to obtain information about collected
data; and to perform pre-processing to the collected data. In
some cases, an edge-based data collection system provides
a highly differentiated single node experience. The edge-
based data collection system can serve as a steppingstone for
distributed user experience. In some implementations, an
edge-based data collection system is easy to configure, setup
and get started; can provide management at scale; and
balance performance and resource utilization. In some cases,
a combination of these and potentially other advantages and
improvements may be obtained.

FIG. 1 is a block diagram showing aspects of an example
computing environment 100. The example computing envi-
ronment 100 includes data sources 102, data destinations
104, data storage 106, network 108, a user device 120, and
an observability pipeline system 110. The observability
pipeline system 110 includes a leader role 112, worker roles
114, and an edge-based data collection system that includes
edge agents 130 running on the data sources 102. Each edge
agent 130 can be deployed as an application or another type
of software module running on the computer nodes that
operate as data sources 102. The computing environment
100 may include additional or different features, and the
elements of the computing environment 100 may be con-
figured to operate as described with respect to FIG. 1 or in
another manner.

In some implementations, the computing environment
100 contains the computing infrastructure of a business
enterprise, an organization or another type of entity or group
of entities. During operation, various data sources 102 in an
organization’s computing infrastructure produce volumes of
machine data that contain valuable or useful information.
The machine data may include data generated by the orga-
nization itself, data received from external entities, or a
combination. By way of example, the machine data can
include network packet data, sensor data, application pro-
gram data, observability data, and other types of data.
Observability data can include, for example, system logs,
error logs, stack traces, system performance data, or any

US 11,921,602 B2

1 2

5

10

15

20

25

30

35

40

45

50

55

60

65

other data that provides information about computing infra-
structure and applications (e.g., performance data and diag-
nostic information). The observability pipeline system 110
can receive and process the machine data generated by the
data sources 102. For example, the machine data can be
processed to diagnose performance problems, monitor user
interactions, and to derive other insights about the comput-
ing environment 100. Generally, the machine data generated
by the data sources 102 does not have a common format or
structure, and the observability pipeline system 110 can
generate structured output data having a specified form,
format, or type. The output generated by the observability
pipeline system can be delivered to data destinations 104,
data storage 106, user devices 120, or a combination of these
and other destinations. In some cases, the data delivered to
the data storage 106 includes the original machine data that
was generated by the data sources 102, and the observability
pipeline system 110 can later retrieve and process the
machine data that was stored on the data storage 106.

In general, the observability pipeline system 110 can
provide a number of services for processing and structuring
machine data for an enterprise or other organization. In some
instances, the observability pipeline system 110 provides
schema-agnostic processing, which can include, for
example, enriching, aggregating, sampling, suppressing, or
dropping fields from nested structures, raw logs, and other
types of machine data. The observability pipeline system
110 may also function as a universal adapter for any type of
machine data destination. For example, the observability
pipeline system 110 may be configured to normalize, de-
normalize, and adapt schemas for routing data to multiple
destinations. The observability pipeline system 110 may also
provide protocol support, allowing enterprises to work with
existing data collectors, shippers, and agents, and providing
simple protocols for new data collectors. In some cases, the
observability pipeline system 110 can test and validate new
configurations and reproduce how machine data was pro-
cessed. The observability pipeline system 110 may also have
responsive configurability, including rapid reconfiguration
to selectively allow more verbosity with pushdown to data
destinations or collectors. The observability pipeline system
110 may also provide reliable delivery (e.g., at least once
delivery semantics) to ensure data integrity with optional
disk spooling.

The data sources 102, data destinations 104, data storage
106, observability pipeline system 110, and the user device
120 are each implemented by one or more computer systems
that have computational resources (e.g., hardware, software,
and firmware) that are used to communicate with each other
and to perform other operations. For example, each com-
puter system may be implemented as the example computer
system 500 shown in FIG. 5 or components thereof. In some
implementations, computer systems in the computing envi-
ronment 100 can be implemented in various types of
devices, such as, for example, laptops, desktops, worksta-
tions, smartphones, tablets, sensors, routers, mobile devices,
Internet of Things (IOT) devices, and other types of devices.
Aspects of the computing environment 100 can be deployed
on private computing resources (e.g., private enterprise
servers, etc.), cloud-based computing resources, or a com-
bination thereof. Moreover, the computing environment 100
may include or utilize other types of computing resources,
such as, for example, edge computing, fog computing, etc.

The data sources 102, data destinations 104, data storage
106, observability pipeline system 110, and the user device
120 and possibly other computer systems or devices com-
municate with each other over the network 108. The

example network 108 can include all or part of a data
communication network or another type of communication
link. For example, the network 108 can include one or more
wired or wireless connections, one or more wired or wireless
networks, or other communication channels. In some
examples, the network 108 includes a Local Area Network
(LAN), a Wide Area Network (WAN), a private network, an
enterprise network, a Virtual Private Network (VPN), a
public network (such as the Internet), a peer-to-peer net-
work, a cellular network, a Wi-Fi network, a Personal Area
Network (PAN) (e.g., a Bluetooth low energy (BTLE)
network, a ZigBee network, etc.) or other short-range net-
work involving machine-to-machine (M2M) communica-
tion, or another type of data communication network.

The data sources 102 can include multiple user devices,
servers, sensors, routers, firewalls, switches, virtual
machines, containers, or a combination of these and other
types of computer devices or computing infrastructure com-
ponents. Part of the observability pipeline system 110 on the
data sources 102 enable the data sources 102 to detect,
monitor, create, or otherwise produce machine data during
their operation. In some instances, the machine data may be
provided to the leader role 112 or the worker role 114 of the
observability pipeline system 110 through the network 108
for further processing. In some cases, the machine data are
formatted into pipeline input data to the data processing
engine 134 of the edge agent 130

The data sources 102 can include data sources designated
as push sources (e.g., Splunk HEC, Syslog, Elasticsearch
API, TCP JSON, TCP Raw, HTTP/S, Raw HTTP/S, Kinesis
Firehose, SNMP Trap, Metrics, and others), pull sources
(e.g., Kafka, Kinesis Streams, SQS, S3, Google Cloud
Pub/Sub, Azure Blob Storage, Azure Event Hubs, Office 365
Services, Office 365 Activity, Office 365 Message Trace,
Prometheus, and others), and other types of data sources.

In some implementations, the data sources 102 includes
applications 116. In the example shown in FIG. 1, an
application 116 includes a collection of computer instruc-
tions that constitute a computer program. The computer
instructions reside in memory and execute on a processor.
The computer instructions can be compiled or interpreted.
An application 116 can be contained in a single module or
can be statically or dynamically linked with other libraries.
The libraries can be provided by the operating system or the
application provider. The application 116 can be written in
a variety of computer languages, including Java, “C,”
“C++,” Python, Pascal, Go, or Fortran as a few examples.

As shown in FIG. 1, the edge agent 130 includes log
discovery parameters 132 and a data processing engine 134.
In certain cases, the edge agent 130 may include other
components. In some implementations, the log discovery
parameters 132 specify values that are used to filter or select
log files that are accessed by processes running on the one
or more data sources. In some instances, the values of the log
discovery parameters 132 can be pre-determined at default
values by the edge agent 130, for example, when installed on
the one or more data sources 102. In some instances, the
values of the log discovery parameters 132 can be config-
ured, changed, or updated by a user of the one or more data
sources 102 or the leader role 112 of the observability
pipeline system 110.

In some implementations, the edge agent 130 operating
on a computer node inspects the computer node; identifies
processes running on the computer node (e.g., instances of
the applications 116 or other types of processes); explores
and discovers log files that the processes access; filters and
selects a subset of the discovered log files to be monitored

US 11,921,602 B2

3 4

5

10

15

20

25

30

35

40

45

50

55

60

65

according to the log discovery parameters; extracts and
formats data from the subset of the discovered log files;
pre-process the data by operation of the data processing
engine 134; and routes the extracted data or the pre-pro-
cessed data to a data destination (e.g., a cloud-based cen-
tralized node, a user device, a data storage, the leader role
112 or the worker roles 114 of the observability pipeline
system 110). In some implementations, the discovered log
files are added to a list of monitored log files that are
monitored by the observability pipeline system. In some
implementations, when one or more of the log discovery
parameters 132 are modified based on user input, a different
subset of the identified files is selected according to the
modified log discovery parameters 132 and the list of
monitored log files is updated to include the different subset
of the identified files to be monitored by the observability
pipeline system.

In some implementations, the data extracted from the
discovered log files can be formatted to generate observ-
ability pipeline input data which can be processed by the
data processing engine 134 to generate observability pipe-
line output data. The observability pipeline output data from
the data processing engine 134 can be forwarded to other
components (e.g., the leader role 112 or the worker roles
114) of the observability pipeline system 110 through the
network 108 as shown in FIG. 1, where one or more
sub-processes can be performed, or to data destinations 104

or data storage 106. In some instances, the edge-based data
collection system 130 on a data source 102 can manage
multiple other data sources 102. In some implementations,
the observability pipeline output data from the data process-
ing engine 134 can be augmented with metadata collected
from the computer node. In certain examples, the augmented
observability pipeline output data can be further transmitted
to data destinations 104. In some implementations, the data
processing engine 134 of the edge agent 130 has one or more
of the features shown and described in the example data
processing engine 200 in FIG. 2. In some examples, the data
processing engine 134 of the data source 102 may be
implemented in another manner.

The data destinations 104 can include multiple user
devices, servers, databases, analytics systems, data storage
systems, or a combination of these and other types of
computer systems. The data destinations 104 can include,
for example, log analytics platforms, time series databases
(TSDBs), distributed tracing systems, security information
and event management (SIEM) or user behavior analytics
(UBA) systems, and event streaming systems or data lakes
(e.g., a system or repository of data stored in its natural/raw
format). The observability pipeline output data produced by
the observability pipeline system 110 can be communicated
to the data destinations 104 through the network 108.

The data storage 106 can include multiple user devices,
servers, databases, or a combination of these and other types
of data storage systems. Generally, the data storage 106 can
operate as a data source or a data destination (or both) for the
observability pipeline system 110. In some examples, the
data storage 106 includes a local or remote filesystem
location, a network file system (NFS), Amazon S3 buckets,
S3-compatible stores, other cloud-based data storage sys-
tems, enterprise databases, systems that provides access to
data through REST API calls or custom scripts, or a com-
bination of these and other data storage systems. The observ-
ability pipeline output data, which may include the machine
data from the data sources 102 as well as data analytics and

other output from the observability pipeline system 110, can
be communicated to the data storage 106 through the
network 108.

The observability pipeline system 110 may be used to
monitor, track, and triage events by processing the machine
data from the data sources 102. The observability pipeline
system 110 can receive an event data stream from each of the
data sources 102 and identify the event data stream as
observability pipeline input data to be processed by one or
more of the data processing engines 134, the leader role 112
or the worker roles 114 of the observability pipeline system
110. The observability pipeline system 110 generates
observability pipeline output data by applying observability
pipeline processes to the observability pipeline input data
and communicates the observability pipeline output data to
the data destinations 104. In some implementations, the
observability pipeline system 110 operates as a buffer
between data sources 102 and data destinations 104, such
that some data sources 102 can send their data to the
observability pipeline system 110, which handles filtering
and routing the data to proper data destinations.

In some implementations, the observability pipeline sys-
tem 110 unifies data processing and collection across many
types of machine data (e.g., metrics, log files, and traces).
The machine data can be processed by the observability
pipeline system 110 by enriching it and reducing or elimi-
nating noise and waste, or otherwise formatting it. The
observability pipeline system 110 may also deliver the
processed data to any tool in an enterprise designed to work
with observability data. For example, the observability pipe-
line system 110 may analyze event data and send analytics
to multiple data destinations 104, thereby enabling the
systematic observation of event data for known conditions
which require attention or other action. Consequently, the
observability pipeline system 110 can decouple data sources
of machine data from data destinations and provide a buffer
that makes many, diverse types of machine data easily
consumable.

In some example implementations, the observability pipe-
line system 110 can operate on any type of machine data
generated by the data sources 102 to properly observe,
monitor, and secure the running of an enterprise’s infrastruc-
ture and applications 116 while reducing or minimizing
overlap, wasted resources, and cost. Specifically, instead of
using different tools for processing different types of
machine data, the observability pipeline system 110 can
unify data collection and processing for all types of machine
data (e.g., logs 204, metrics 206, and traces 208 shown in
FIG. 2) and route the processed machine data to multiple
data destinations 104. Unifying data collection can minimize
or reduce redundant agents with duplicate instrumentation
and duplicate collection for the multiple destinations. Uni-
fying processing may allow routing of processed machine
data to disparate data destinations 104 while adapting data
shapes and controlling data volumes.

In an example, the observability pipeline system 110
obtains DogStatsd metrics, processes the DogStatsd metrics
(e.g., by enriching the metrics), sends processed data having
high cardinality to a first destination (e.g., Honeycomb) and
processed data having low cardinality to a second, different
destination (e.g., Datadog). In another example, the observ-
ability pipeline system 110 obtains windows event logs,
sends full fidelity processed data to a first destination (e.g.,
an S3 bucket), and sends a subset (e.g., where irrelevant
events are removed from the full fidelity processed data) to
one or more second, different destinations (e.g., Elastic and
Exabeam). In another example, machine data can be

US 11,921,602 B2

5 6

5

10

15

20

25

30

35

40

45

50

55

60

65

obtained from a Splunk forwarder and processed (e.g.,
sampled). The raw processed data may be sent to a first
destination (e.g., Splunk). The raw processed data may
further be parsed, and structured events may be sent to a
second destination (e.g., Snowflake).

In some implementations, the leader role 112 of the
observability pipeline system 110 leads the overall operation
by configuring and monitoring the worker roles 114 of the
observability system 110. The worker roles 114 of the
observability pipeline system 110 may receive observability
pipeline output data from the data processing engine 134 of
the edge agent 130 on the data sources 102, and may apply
further observability pipeline processes to the received data,
and deliver pipeline output data to the data destinations 104
and data storage 106.

The observability pipeline system 110 may deploy the
leader role 112 and a number of worker roles 114 on a single
computer node or on many computer nodes. For example,
the leader role 112 and one or more worker roles 114 may
be deployed on the same computer node. Or in some cases,
the leader role 112 and each of the worker roles 114 may be
deployed on distinct computer nodes. The distinct computer
nodes can be, for example, distinct computer devices, virtual
machines, containers, processors, or other types of computer
nodes.

The user device 120 or another computer node in the
observability pipeline system 110 can provide a user inter-
face for the observability pipeline system 110. Aspects of the
user interface can be rendered on a display (e.g., the display
550 in FIG. 5) or otherwise presented to a user. The user
interface may be generated by an observability pipeline
application that interacts with the observability pipeline
system 110. The observability pipeline application can be
deployed as software that includes application programming
interfaces (APIs), graphical user interfaces (GUIs), and
other modules.

In some implementations, an observability pipeline appli-
cation (e.g., the edge agent 130, or another type of applica-
tion or software module) can be deployed as a file, execut-
able code, or another type of machine-readable instructions
executed on a computer node. The observability pipeline
application, when executed, may render GUIs for display to
a user (e.g., on a touchscreen, a monitor, or other graphical
interface device), and the user can interact with the observ-
ability pipeline application through the GUIs. Certain func-
tionality of the observability pipeline application may be
performed on the data sources 102 or the user device 120 or
may invoke the APIs, which can access functionality of the
observability pipeline system 110. The observability pipe-
line application may be rendered and executed within
another application (e.g., as a plugin in a web browser), as
a standalone application, or otherwise. In some cases, an
observability pipeline application may be deployed as an
installed application on a workstation, as an “app” on a
tablet or smartphone, as a cloud-based application that
accesses functionality running on one or more remote serv-
ers, or otherwise.

In some implementations, multiple components or aspects
of the observability pipeline system 110 are deployed on a
single computer node, for example, on a data source 102 or
another computer device in the computing environment 100.
The computer node can operate as one or more of the edge
agent 130, the leader role 112 and the worker roles 114 and
may execute an observability pipeline application that pro-
vides a user interface as described above. In some cases, the
edge agents 130, the leader role 112 and each of the worker
roles 114 are deployed on distinct components (e.g., distinct

processors, distinct cores, distinct virtual machines, etc.)
within a single computer node. In such cases, they can
communicate with each other by exchanging signals within
the computer device, through a shared memory, or other-
wise.

In some implementations, the observability pipeline sys-
tem 110 is deployed on a distributed computer system that
includes multiple computer nodes. For instance, the observ-
ability pipeline system 110 can be deployed on a server
cluster, on a cloud-based “serverless” computer system, or
another type of distributed computer system. The computer
nodes in the distributed computer system may include a
number of endpoint devices operating as data sources 102,
a leader node operating as the leader role 112 and multiple
worker nodes operating as the respective worker roles 114.
One or more computer nodes of the distributed computer
system (e.g., the leader node) may communicate with the
user device 120, for example, through an observability
pipeline application that provides a user interface as
described above. In some cases, the data sources, the leader
node and each of the worker nodes are distinct computer
devices in the computing environment 100. In some cases,
the data sources, the leader node and each of the worker
nodes can communicate with each other using TCP/IP
protocols or other types of network communication proto-
cols transmitted over a network (e.g., the network 108
shown in FIG. 1) or another type of data connection.

In some implementations, the observability pipeline sys-
tem 110 includes software installed on private enterprise
servers, a private enterprise computer device, or other types
of enterprise computing infrastructure (e.g., one or more
computer systems owned and operated by corporate entities,
government agencies, other types of enterprises). In such
implementations, some or all of the data sources 102, data
destinations 104, data storage 106, and the user device 120
can be or include the enterprise’s own computer resources,
and the network 108 can be or include a private data
connection (e.g., an enterprise network or VPN). In some
cases, the observability pipeline system 110 and the user
device 120 (and potentially other elements of the computer
environment 100) operate behind a common firewall or
other network security system.

In some implementations, the observability pipeline sys-
tem 110 includes software running on a cloud-based com-
puting system that provides a cloud hosting service. For
example, the observability pipeline system 110 may be
deployed as a SaaS system running on the cloud-based
computing system. For example, the cloud-based computing
system may operate through Amazon® Web Service (AWS)
Cloud, Microsoft Azure Cloud, Google Cloud, DNA Nexus,
or another third-party cloud. In such implementations, some
or all of the data sources 102, data destinations 104, data
storage 106, and the user device 120 can interact with the
cloud-based computing system through APIs, and the net-
work 108 can be or include a public data connection (e.g.,
the Internet). In some cases, the observability pipeline
system 110 and the user device 120 (and potentially other
elements of the computer environment 100) operate behind
different firewalls, and communication between them can be
encrypted or otherwise secured by appropriate protocols
(e.g., using public key infrastructure or otherwise).

In some implementations, the data sources 102 each
include one or more containers 118, and an edge agent 130
running on a data source can identify files and monitor data
in the containers 118 running on that data source. When the
identified files include a file defined in a container 118, a
modified path for the file can be identified by operation of

US 11,921,602 B2

7 8

5

10

15

20

25

30

35

40

45

50

55

60

65

the edge agent 130. In some implementations, the modified
path allows a process (e.g., the edge agent 130) running
outside the container to access the file in the container 118.

In some implementations, the edge agent 130 is operated
in one of the containers 118 on the data source 102. In this
case, when identifying processes running on the computer
node, a root file system of the computer node can be
mounted, and the edge agent 130 can identify processes
running in other containers 118 of the computer node by
scanning the root file system. In some implementations, a
container discovery process is performed to identify con-
tainers running on the computer node. Console log files in
each of the containers are detected; and a list of the console
log files is added to the list of monitored log files to be
monitored by the observability pipeline system 110. In some
implementations, console logs in each of the containers are
detected and collected through one or more sockets.

In some instances, container metrics for one or more of
the containers 118 are collected, and observability pipeline
input data is generated by formatting the container metrics.
The observability pipeline input data can then be processed
by the data processing engine 134 of the edge agent 130.
When the observability pipeline input data is processed,
resource utilization on the computer node and a duration of
processing can be measured and determined.

FIG. 2 is a block diagram showing aspects of an example
data processing engine 200. The example the data process-
ing engine 200 may be implemented by one or more of the
data sources 102, the leader role 112, the worker roles 114
or other components shown in FIG. 1, or the data processing
engine 200 may be implemented in another type of system.

The example data processing engine 200 shown in FIG. 2
includes data collection 230, schema normalization 220,
routing 222, streaming analytics and processing 224A,
224B, 224C, and output schematization 226A, 226B, 226C,
226D, 226E. The data processing engine 200 may include
additional or different operations, and the operations of the
data processing engine 200 may be performed as described
with respect to FIG. 2 or in another manner. In some cases,
one or more of the operations can be combined, or an
operation can be divided into multiple sub-processes. Cer-
tain operations may be iterated or repeated, for example,
until a terminating condition is reached. In some cases, one
or more of the operations may receive observability pipeline
input data 201 generated by an edge agent operating on an
endpoint device or another data source.

As shown in FIG. 2, the data processing engine 200 is
applied to observability pipeline input data 201 from data
sources, and the data processing engine 200 delivers pipe-
line output data 203 to data destinations. The data sources
can include any of the example data sources 102 or data
storage 106 described with respect to FIG. 1, and the data
destinations can include any of the example data destina-
tions 104 or data storage 106 described with respect to FIG.
1.

The example observability pipeline input data 201 shown
in FIG. 2 includes logs 204, metrics 206, traces 208, stored
data payloads 210, and possibly other types of machine data.
In some cases, some or all of the machine data can be
generated by agents (e.g., Fluentd, Collectd, OpenTelem-
etry) that are deployed at the data sources, for example, on
various types of computing devices in a computing envi-
ronment (e.g., in the computing environment 100 shown in
FIG. 1, or another type of computing environment). The logs
204, metrics 206, and traces 208 can be decomposed into
event data 202 that are consumed by the data processing
engine 200. In some instances, logs 204 can be converted to

metrics 206, metrics 206 can be converted to logs 204, or
other types of data conversion may be applied. In some
cases, the logs 204, metrics 206, traces 208, and stored data
payloads 210 that constitute the example observability pipe-
line input data 201, may be provided by an edge agent 130
as shown in FIG. 1 or another type of agent.

In the example shown, the stored data payloads 210
represent event data retrieved from external data storage
systems. For instance, the stored data payloads 210 can
include event data that an observability pipeline process
previously provided as output to the external data storage
system.

The event data 202 are streamed to the data processing
engine 200 for processing. Here, streaming refers to a
continual flow of data, which is distinct from batching or
batch processing. With streaming, data are processed as they
flow through the system continuously (as opposed to batch-
ing, where individual batches are collected and processed as
discrete units). As shown in FIG. 2, the event data from the
logs 204, metrics 206, and traces 208 are streamed directly
to the schema normalization process (at 220) without use of
the collection process (at 230), whereas the event data from
the stored data payloads 210 are streamed to the collection
process (at 230) and then streamed to the schema normal-
ization process (at 220), the routing process (at 222) or the
streaming analytics and processing (at 224).

In some instances, event data 202 represents events as
structured or typed key value pairs that describe something
that occurred at a given point in time. For example, the event
data 202 can contain information in a data format that stores
key-value pairs for an arbitrary number of fields or dimen-
sions, e.g., in JSON format or another format. A structured
event can have a timestamp and a “name” field. Instrumen-
tation libraries can automatically add other relevant data like
the request endpoint, the user-agent, or the database query.
In some implementations, components of the events data
202 are provided in the smallest unit of observability (e.g.,
for a given event type or computing environment). For
instance, the event data 202 can include data elements that
provide insight into the performance of the computing
environment 100 to monitor, track, and triage incidents (e.g.,
to diagnose issues, reduce downtime, or achieve other
system objectives in a computing environment).

In some instances, logs 204 represent events serialized to
disk, possibly in several different formats. For example, logs
204 can be strings of text having an associated timestamp
and written to a file (often referred to as a flat log file). The
logs 204 can include unstructured logs or structured logs
(e.g., in JSON format). For instance, log analysis platforms
store logs as time series events, and the logs 204 can be
decomposed into a stream of event data 202.

In some instances, metrics 206 represent summary infor-
mation about events, e.g., timers or counters. For example,
a metric can have a metric name, a metric value, and a low
cardinality set of dimensions. In some implementations,
metrics 206 can be aggregated sets of events grouped or
collected at regular intervals and stored for low cost and fast
retrieval. The metrics 206 are not necessarily discrete and
instead represent aggregates of data over a given time span.
Types of metric aggregation are diverse (e.g., average, total,
minimum, maximum, sum-of-squares) but metrics typically
have a timestamp (representing a timespan, not a specific
time); a name; one or more numeric values representing
some specific aggregated value; and a count of how many
events are represented in the aggregate.

In some instances, traces 208 represent a series of events
with a parent/child relationship. A trace may provide infor-

US 11,921,602 B2

9 10

5

10

15

20

25

30

35

40

45

50

55

60

65

mation of an entire user interaction and may be displayed in
a Gantt-chart like view. For instance, a trace can be a
visualization of events in a computing environment, show-
ing the calling relationship between parent and child events,
as well as timing data for each event. In some implemen-
tations, individual events that form a trace are called spans.
Each span stores a start time, duration, and an identification
of a parent event (e.g., indicated in a parent-id field). Spans
without an identification of a parent event are rendered as
root spans.

The example observability pipeline output data 203
shown in FIG. 2 include data formatted for log analytics
platforms (250), data formatted for time series databases
(TSDBs) (252), data formatted for distributed tracing sys-
tems (254), data formatted for security information and
event management (SIEM) or user behavior analytics
(UBA) systems 256, and data formatted for event streaming
systems or data lakes 258 (e.g., a system or repository of
data stored in its natural/raw format). Log analytics plat-
forms are configured to operate on logs to generate statistics
(e.g., web, streaming, and mail server statistics) graphically.
TSDBs operate on metrics; example TSDBs include Round
Robin Database (RRD), Graphite’s Whisper, and
OpenTSDB. Tracing systems operate on traces to monitor
complex interactions, e.g., interactions in a microservice
architecture. SIEMs provide real-time analysis of security
alerts generated by applications and network hardware.
UBA systems detect insider threats, targeted attacks, and
financial fraud. Observability pipeline output data 203 may
be formatted for, and delivered to, other types of data
destinations in some cases.

In the example shown in FIG. 2, the data processing
engine 200 includes a schema normalization module that (at
220) converts the various types of event data 202 to a
common schema or representation to execute shared logic
across different agents and data types. For example, machine
data from various agents such as Splunk, Elastic, Influx, and
OpenTelemetry have different, opinionated schemas, and the
schema normalization module can convert the event data to
normalized event data. Machine data intended for different
destinations may need to be processed differently. Accord-
ingly, the data processing engine 200 includes a routing
module that (at 222) routes the normalized event data (e.g.,
from the schema normalization module 220) to different
processing paths depending on the type or content of the
event data. The routing module can be implemented by
having different streams or topics. The routing module
routes the normalized data to respective streaming analytics
and processing modules. FIG. 2 shows three streaming
analytics and processing modules, each applied to normal-
ized data (at 224A, 224B, 224C); however, any number of
streaming analytics and processing modules may be applied.
Each of the streaming analytics and processing modules can
aggregate, suppress, mask, drop, or reshape the normalized
data provided to it by the routing module. The streaming
analytics and processing modules can generate structured
data from the normalized data provided to it by the routing
module. The data processing engine 200 includes output
schema conversion modules that (at 226A, 226B, 226C,
226D, 226E) schematize the structured data provided by the
streaming analytics and processing modules. The structured
data may be schematized for one or more of the respective
data destinations to produce the observability pipeline out-
put data 203. For instance, the output schema conversion
modules may convert the structured data to a schema or
representation that is compatible with a data destination. In
some implementations, the data processing engine 200

includes an at-least-once delivery module that (at 228)
applies delivery semantics that guarantee that a particular
message can be delivered one or more times and will not be
lost. In some implementations, the data processing engine
200 includes an alerting or centralized state module, a
management module, or other types of sub-processes.

In the example shown in FIG. 2, the data processing
engine 200 includes a collection module that (at 230)
collects filtered event data from stored data payloads 210.
For example, the stored data payloads 210 may represent
event data that were previously processed and stored on the
event streaming/data lake 258 or event data that were
otherwise stored in an external data storage system. For
example, some organizations have a high volume of data
that is kept in storage systems (e.g., S3, Azure Blob Store,
etc.) for warehousing purposes, or they may have event data
that can be scraped from a REST endpoint (e.g., Pro-
metheus). The collection module may allow organizations to
apply the data processing engine 200 to data from storage,
REST endpoints, and other systems regardless of whether
the data has been processed by an observability pipeline
system in the past. The data collection module can retrieve
the data from the stored data payload 210 on the external
data storage system, stream the data to the data processing
engine 200 (e.g., via the schema normalization module, the
routing module, or a streaming analytics and processing
module), and send the output to any of the data destinations
230.

FIG. 3 is a flow chart showing aspects of an example
process 300. In some implementations, the operations of the
example process 300 are performed by an edge agent (e.g.,
the edge agent 130 shown in FIG. 1) on an endpoint device
or another type of computer node (e.g., the data source 102
shown in FIG. 1), and the edge agent operates as part of an
observability pipeline system as (e.g., as described with
respect to FIG. 1 or in another manner). The example
process 300 may include additional or different operations,
including operations performed by additional or different
components, and the operations may be performed in the
order shown or in another order.

In some implementations, the edge agent is configured to
collect level 0 host metrics (e.g., CPU, memory, disk,
network, etc.) of the computer node. In some implementa-
tions, the edge agent is configured to discover if the com-
puter node is running docker or is a k8s (Kubernetes) node
and collect level 0 container metrics. In some implementa-
tions, the edge agent is configured to discover running
processes (e.g., containerized or not containerized) and their
corresponding log files. In this case, the edge agent is
configured to correlate dockerd/containerd log paths to
corresponding containers and resolve actual paths of the log
files of containerized applications. In some implementa-
tions, the edge agent is configured to discover networks,
volumes, pods, and namespaces. In some implementations,
the edge agent is configured to provide other functionalities
and perform other tasks. In some instances, the edge agent
can be installed and configured on the computer node prior
to being initiated for performing the operations in the
example process 300.

In some implementations, the edge agent provides a user
interface that allows the users to explore the discovered
metrics (e.g., host, docker, k8s, etc.) of the computer node;
to view, explore and search the discovered log files; and to
configure the edge agent. For example, through the user
interface of the computer node, users can change collection
level for some or all metrics; route some or all of extracted
data to a data destination (e.g., through packs/pipelines); use

US 11,921,602 B2

11 12

5

10

15

20

25

30

35

40

45

50

55

60

65

interposed functions to attach to running processes for
deeper introspection; or configure other aspects of the edge
agent.

At 302, processes running on the computer node are
identified. For example, processes running on the computer
node can be identified by directly scanning a list of running
processes on the computer node, for example by accessing
the operating system of the computer node using/proc/*. In
some implementations, the edge agent identifies running
processes on the computer node based on certain criteria,
e.g., resource utilization, process duration, or another factor.
For example, running processes that utilize at least X %
CPU, at least Y % memory may be identified. For another
example, processes that run for at least Z seconds may be
identified. This heuristic process can be used to identify
“relevant” applications.

In some implementations, identifying the processes run-
ning on the computer node includes identifying processes
that are running in one or more containers on the computer
node. In some implementations, a docker discovery process
is used to obtain container metrics. In some instances, a
docker discovery process can be used to report an inventory
of containers on the computer node. In some instances, an
API socket can be located for a docker server. Locations for
the operating system (e.g., Linux distros, MacOS, windows,
etc.) of the computer node can be searched. In response to
a process running in a container where a file system of the

computer node has been mounted, the same locations in the
mounted volume can be searched. In some implementations,
once the API socket is located, an event reporting details for
the docker server, e.g., version, uptime, number of contain-
ers running and stopped, number of images, labels, numbers
of volumes mounted, numbers of networks connected,
resource usage, and other container metrics can be created.
In some instances, these details obtained at the docker API
socket can be used to locate files where respective console
logs for respective running containers are stored. The list of
containers can be filtered, for example according to the
container metrics, and the console logs can be collected. In
some instances, a similar container discovery process can be
used to collect and generate metrics for the K8s cluster, each

node, each pod, and each container for Kubernetes deploy-
ments. In this discovery process, the API socket can be
searched; and K8s container console logs can be also
collected.

In some instances, a process can be running in a container
of the computer node isolated from the operating system of

the computer node. A process ID lists control groups that the
running process uses, and a container ID can be extracted
from the control groups. For example, a Linux process ID
(PID), /proc/{ PID} /cgroup lists the control groups (e.g.,
“namespaces”) that a process uses. On a computer node with
cgroup v1 enabled, example entries for a process that is
running on the computer node and not running in a container
are given as

12:memory:/user.slice/user-1000.slice/session-1530.scope

11:pids:/user.slice/user-1000.slice/session-1530.scope 10:hugetlb:/

9:blkio:/user.slice

8:cpuset:/

7:freezer:/

6:devices:/user.slice

5:cpu,cpuacct:/user.slice

4:net_cls,net_prio:/

3:rdma:/

2:perf_event:/

1:name=systemd:/user.slice/user-1000.slice/session-1530.scope

0::/user.slice/user-1000.slice/session-1530.scope

Example entries for a process that is running in a container
of a computer node are given as

12:memory:/docker/31aa1bcbffaf974e10526453fb7b645241557f29c3262157cf670b9332762438
11:pids:/docker/31aa1bcbffaf974e10526453fb7b645241557f29c3262157cf670b9332762438
10:hugetlb:/docker/31aa1bcbffaf974e10526453fb7b645241557f29c3262157cf670b9332762438
9:blkio:/docker/31aa1bcbffaf974e10526453fb7b645241557f29c3262157cf670b9332762438
8:cpuset:/docker/31aa1bcbffaf974e10526453fb7b645241557f29c3262157cf670b9332762438
7:freezer:/docker/31aa1bcbffaf974e10526453fb7b645241557f29c3262157cf670b9332762438
6:devices:/docker/31aa1bcbffaf974e10526453fb7b645241557f29c3262157cf670b9332762438
5:cpu,cpuacct:/docker/31aa1bcbffaf974e10526453fb7b645241557f29c3262157cf670b9332762438
4:net_cls,net_prio:/docker/31aa1bcbffaf974e10526453fb7b645241557f29c3262157cf670b9332762438
3:rdma:/
2:perf_event:/docker/31aa1bcbffaf974e10526453fb7b645241557f29c3262157cf670b9332762438
1:name=systemd:/docker/31aa1bcbffaf974e10526453fb7b645241557f29c3262157cf670b9332762438
0::/system.slice/containerd.service

In this case, the container ID of 31aa1bcbffaf974e1-
0526453fb7b645241557f29c3262157cf670b9332762438
can be extracted from the example entries for the process.
For another example, on a computer node with cgroup v2
enabled, example entries for a process that is running on the
computer node and not in a container are given as:

0::/user.slice/user-
1000.slice/user@1000.service/app.slice/snap.code.code.63e42 2e0-
8525-4103-8946-f8c84e89d2b8.scope

Example entries for a process that is running in a container
are given as:

0::/system.slice/docker-
d139ba47385b92595718f325669fb88a0a3e0feabe770dbb778264f402727524.scope

In some instances, an expression, e.g., /docker[−\\]([a-fa-
F0-9]+)/can be used to check for and extract the docker
container ID from the process’ cgroupfile.

In some implementations, the edge agent includes meta-
data collector agents that are used to discover metadata and
report specific defaults and configurations on the computer

US 11,921,602 B2

13 14

5

10

15

20

25

45

50

65

node. The metadata can be automatically added to events
from any source that record various aspects of the computer
node it’s running. In some implementations, metadata
includes details about the edge agent (e.g., version, configu-
ration, etc.), details about the operating system of the
computer node (e.g., name, version, hostname, user and
group IDs, CPU, and memory resources, network interfaces,
etc.), and names and values of all the environment variables.
In some instances, when the AWS collector is connected to
an application programing interface (API) that is available in
EC2 instances, the metadata includes AWS region, instance
type, labels, VPC, etc. for the VM. In some instances, the
metadata may include other information about the computer
node. The metadata may be processed by the observability
pipeline system or may be augmented by observability
pipeline output data. In some examples, the metadata pro-
cessed or augmented can then be sent to a data destination
(e.g., a data storage, or a user device).

In some cases, the edge agent, when installed on the
computer node, includes stock configurations that can pro-
vide users with immediate visibility into the computer node
by providing information such as: resource usage metrics
(e.g., system wide or by process), container events and
metrics (e.g., docker/k8s events and metrics), corresponding
log files of the running processes, or other information. In
some implementations, the above information is available to
the user without performing additional configuration to the
edge agent after it is installed on the computer node.

At 304, files that the respective processes have opened for
writing on the computer node are identified. In some
instances, files that the identified running processes have
opened can be directly accessed. For example, these files can
be accessed by /proc/{ pid} /fd/*. In some instances, files that
the identified running processes have opened can be iden-
tified using the heuristics process. For example: ls-lab/proc/
*/fd?grep-e'/log/'−e'.log$'. In some implementations, the
edge agent can use additional or different types of heuristic
processes, including those that are customizable by the user
according to a define pattern, to identify files that are
accessed by running processes on the computer node. In
some instances, sockets and other non-file entries, files that
are not open for writing, files/paths that are not matching the
defined patterns may not be identified as files that are to be
monitored by the observability pipeline system. In some
implementations, files accessed by containerized processes
or applications are identified.

At 306, log discovery parameters of the observability
pipeline system are accessed. In some implementations, the
log discovery parameters are configured to define a set of
criteria that can be applied to filter the identified files. In
some implementations, the log discovery parameters include
a file type parameter, a file path parameter, a file name
parameter, or other types of parameters, including modifi-
cation time of a file (e.g., last time a file was modified or
accessed etc.), file’s owner or group, file’s permissions, etc.
In some instances, log discovery parameters are specified at
default values when the edge agent is installed on the
computer node. The log discovery parameters and their
values may be changed or updated, for example, by a user
of the computer node through the user interface where the
edge agent is operated on or the leader role of the observ-
ability pipeline system. In some instances, a user can pro-
vide input or feedback through the user interface to the edge
agent of the computer node in response to a list of discov-
ered log files are presented to the user. For example, a user
can remove one or more existing log discovery parameters,
add one or more new log discovery parameters, update, edit

or otherwise specify values for the log discovery parameters,
or another type of action. In some instances, the log discov-
ery parameters of the observability pipeline system may be
stored locally on the computer node or remotely on the
leader role of the observability pipeline system which can be
accessed by the computer node through the network (e.g.,
the network 108 in FIG. 1).

At 308, a subset of the identified files is selected accord-
ing to the log discovery parameters. After accessing the log
discovery parameters, criteria defined by values of the log
discovery parameters are applied to the identified files. In
some implementations, the identified files are filtered, and a
subset of the identified files is selected according to the log
discovery parameters.

In some instances, users can configure the edge agent on
the computer node to directly specify directories of files to
be monitored. For example, users can specify a directory
where files are stored, and criteria (e.g., defined by the log
discovery parameters) to filter files in the directory, e.g., via
a regex. The selected subset of the identified files can be
continuously monitored by the edge agent for new content
being appended, reads and forwards the data.

In some implementations, the edge agent includes a log
data collection agent. The log data collection agent can be
configured to automatically discover log files based on a
heuristic process. In some cases, the log data collection
agent is programmed with certain assumptions such as, for
example, if a process is writing to a log file, the log file is
important and collected/forwarded. A log data collection
operation performed by the log data collection agent in the
edge agent includes two steps, e.g., a discover stage and a
collection stage.

In some cases, during the discover stage, the log data
collection agent can identify (and resolve the path of) files
to be collected under automated mode or manual mode. In
some implementations, under automated mode, log files to
be collected can be automatically discovered by identifying
log files being written to during running processes. Users
can be provided with a great experience under default
configurations by providing the ability to automatically
discover interesting things to observe, e.g., system metrics,
container metrics if a container engine is running, logs, etc.
In some implementations, under the manual mode, log files
or directories to collect are specified by users. In some
instances, under the automated mode, all running processes
are periodically checked (operation 302); look at the files the
running processes have opened for writing (operation 304);
and apply a (configurable) filter defined by log discovery
parameters of the observability pipeline system to select log
files (operations 306 and 308). In certain instances, some
running processes may not be automatically discovered. For
example, when a running process is very short, e.g., bash
scripts, etc. In this case, users can manually configure
additional sources on the computer node to access and
collect data from corresponding log files of these processes.

In some cases, to assist users with visibility into what has
been discovered or what may be discovered (e.g., allow
users to preview which log files would be identified under a
given filter, or which log files have been discovered so far
and would be processed), the discover stage can be per-
formed on-demand and performed independently from the
collection stage.

At 310, a list of discovered log files is generated. Once the
subset of the identified files is selected according to the log
discovery parameters, respective paths, and names of files in
the subset of the identified files can be determined; and a list
of discovered log files which includes the respective paths

US 11,921,602 B2

15 16

5

10

15

20

25

30

35

40

45

50

55

60

65

and names of the files in the selected subset can be gener-
ated. In some instances, the list of discovered log files may
include other parameters of the selected subset of the
identified files. For example, the list of discovered log files
may further include program name, process ID, user, group,
or another property of the file or the corresponding process.

In some implementations, a path of a selected file to be
monitored can be determined according to locations of the
edge agent and the process on the computer node. For
example, each of the process and the edge agent may be
running on a computer node or in a container isolated from
the operating system of the computer node.

In some implementations, the edge agent runs in a con-
tainer isolated from the operating system of the computer
node; and the container is mounted with a root file system
which includes all or parts of the details of the computer
node. For example, a root file system can be mounted on the
container using /hostfs. In this case, a process running on the
computer node instead of running in the container can be
identified, for example, by scanning /host/proc/*; and a
process running in a container can be identified, for example
by scanning /proc/*. In other words, the path to a corre-
sponding file that the process has open needs to be adjusted
to account for this indirection. When a process running on
the computer node is identified and the process writes to a
file at /tmp/foo.log, the actual path of the file that the edge
agent uses to collect data is /hostfs/tmp/foo.log.

When a file accessed by a containerized process is iden-
tified, the path of the file in the containerized process can be
determined from the container’s root. For example, the file
can be accessed by using /proc/<pid>/root/<log-file-path> or
by identifying the top file system layer (upperdir) for the
process in the overlay file system (e.g., overlayfs) (usually
this dir ends with /diff) then using <upperdir>/<log-file-
path> as the file to monitor.

cat /proc/<pid>/mounts ? grep ‘/’
overlay / overlay rw,relatime,lowerdir=/var/lib/docker/overlay2/1
/3RATKUACGGTRO7RKLLVFJO5R2F:/var/lib/docker/overlay2/1
/CTWRFVMH54ZOHKZPHNWHWBW6SY,upperdir=/var/lib/docker/overlay2
/fcfcd4fb34decca0c75952181ff3172c15d3c0611b0f673cbe16e32e599f19c8/diff,workdir=/var/lib/docker/overlay2
/fcfcd4fb34decca0c75952181ff3172c15d3c0611b0f673cbe16e32e599f19c8/work,xino=off 0 0

In certain instances, a container ID of the containerized
process can be determined by looking at /proc/<pid>/cgroup
or elsewhere, for example:

root@ledion-Virtual-Machine:/proc/1# cat /proc/<pid>/cgroup ? grep pids
4:pids:/docker
/cb1d43cbf538d5a851efa0a849497ecd6e0e5c0d6cc5e84ec563dcc6a2160cf3

In some implementations, the edge agent runs directly on
the computer node. In this case, a process running in a
container isolated from the operating system of the computer
node writes to a file. This path of the file can be resolved by
processes running inside the same container. In some
instances, the container ID of container where the process is
running can be identified; and the container ID can then be
used to obtain the container details, for example, from the
Docker API. The container details include the path on the file
system of the computer node where the containers internal
file system is built. In some implementations, the container
path is then used to prefix the file path to obtain the actual
path. For example, when a file path is /tmp/foo.log, and the
container path is /var/lib/docker/overlay2/e0b . . . 542a/

merged, the actual path of the file is determined as /var/lib/
docker/overlay2/e0b . . . 542a/merged/tmp/foo.log.

In some implementations, the edge agent and the process
are running on separate, distinct containers in the same
computer node. For example, the edge agent may run in a
first container while a process is running in a second, distinct
container, and the actual path of the corresponding file where
the process writes to is /hostfs/var/lib/docker/overlay2/
e0b . . . 542a/merged/tmp/foo.log.

In some implementations, a symbolic link (e.g., symblink
or soft link) includes a path or link that point to a log file or
another entry. A symbolic link is a filesystem entry. In some
instances, a symbolic link may be included in the container
details of a container. In certain examples, the use of
symbolic links may affect the Auto Log Discovery process.
In some instances, when a symbolic link in container envi-
ronments leads to a filesystem, the filesystem can be
mapped; and its path can be translated so as to allow the
access of the logs during a log-writing process.

At 312, the list of discovered log files is added to a list of
monitored log files. In some implementations, the list of
discovered log files including the paths and names of the
selected subset of the identified files is added to the list of
monitored log files. The list of monitored log files includes
data of files that are monitored by the observability pipeline
system. In some instances, the list of monitored log files may
be stored locally on the same computer node, for example in
a memory device of the compute node (e.g., the memory 520
in FIG. 5) which can be accessed by the data processing
engine of the edge agent of the computer node. In some
instances, the list of monitored log files may be stored
remotely on other locations. For example, the list of moni-
tored log files may be stored remotely on the leader role of
the observability pipeline system and the list of discovered
log files can be transferred through the network and added

to the list of monitored log files. In some implementations,
the data processing engine 134 of the edge agent 130 can
monitor files according to the list of discovered log files. In
some implementations, data is extracted from the list of
discovered log files and the extracted data is formatted and
used to generate observability pipeline input data for the
data processing engine. The observability pipeline input data
is then processed by operation of the data processing engine
on the computer node to generate observability pipeline
output data.

In some cases, during the collection stage, a file is
effectively monitored for new data appended, and bytes
written to the log file can be processed. The log data
collection agent of the edge agent can be configured to
continuously read from the files and forward the data. In
some cases, files are assumed to be append-only files, which
can be rotated and optionally compressed after rotation.

In some implementations, the operations of the example
process 300 are executed by operation of a process unit of
the computer node during the log data collection. In certain
implementations, when the computer node includes multiple
processor units or multiple cores with multiple applications
running in parallel, data that is generated from such data

US 11,921,602 B2

17 18

5

10

15

20

25

30

45

50

55

60

65

source (e.g., a k8s node) could be enormous for a single
worker process to handle. In this case, the edge agent can be
scaled. For example, the log data collection agent of the edge
agent can be divided into two or more worker processes.
One worker process can be configured for discovering files,
during the discover stage. After the discover stage, discov-
ered paths can be distributed to other worker processes
during which the log collection stage is performed. In some
implementations, dividing the log data collection agent into
multiple worker processes for different operations is per-
formed and coordinated by operation of RPC (remote pro-
cedure calls), API (application programming interfaces)
servers, or other components/units.

In some implementations, the edge agent is capable of
handling discovered files that have skewed write rates, e.g.,
in situations like where an application is being run in debug
or other situations. For example, when a writing rate on a
discovered file is much faster than others, data on the
discovered file is more than others. To ensure that all
discovered files are treated fairly, an algorithm can be
implemented for reading data from the discovered files. The
algorithm allows reading data in a round robin fashion
instead of reading data until EOF of a particular discovered
file. For example, the algorithm may specify a size of data
(e.g., 64 KB or another size) to read from each discovered
file during any duty cycle.

In some implementations, the edge agent is configured to
collect oily (observability) data or other types of data. In
some implementations, the edge agent is configured accord-
ing to user’s instructions specified by data collection param-
eters. The edge agent can collect values of data collection
parameters from the users. For example, users may specify
values of the data collection parameters, such as level of
time granularity (e.g., 1 minute, 10 seconds, 1 second, or
another time interval), level of dimensional granularity,
whether it needs utilization by vCPU, net rx/tx by interface,
or other data collection parameters.

In some implementations, one or more data collection
parameters may be grouped together into multiple distinct
levels. For instance, users may have the opportunity to select
“o11y level”. In some instances, o11y level may include
three levels. For example, level 0 provides metrics aggre-
gated at the system level (e.g., no per core, or process etc.);
level 1 breaks down metrics by properties of the system
(e.g., vCPU, network interface, mountpoint, etc.); and level
2 breaks down metrics by process. Parameters may be
handled in another manner in some cases.

FIG. 4A is a schematic diagram showing aspects of an
example computer system 400 of an observability pipeline
system. The example computer system 400 includes a user
interface 402 and a server 404 communicably coupled
through a socket 406, e.g., an HTTP socket.

FIG. 4B is a schematic diagram showing aspects of
another example observability pipeline system 420. The
example observability pipeline system 420 includes a leader
role 422 and a computer node 428 communicably coupled to
the leader role 422 through a first socket 430A, e.g., a remote
procedure call (RPC) socket. As shown in FIG. 4B, the
leader role 422 includes a leader user interface 424 and a
leader server 426 communicably coupled to the leader UI
424 through a second socket 430B, e.g., a HTTP socket.

In some instances, an edge agent on the computer node
428 may include a local user interface (UI) which is con-
figured to provide various tools for exploring the computer
node. For example, the UI of an edge agent can present
system health data (e.g., uptime, load, resource usage, etc.),
processes, files, and configurations on the computer node

428. The UI of an edge agent allows editing the local
configuration for the edge agent on the computer node 428.

The user interface program on the computer node 428
includes a package through which a user of the computer
node 428 can connect to other parts of the observability
pipeline system 420, for example, the leader role 422 or
another computer node with an edge agent (e.g., an edge
node). When the user interface program is started, the user
interface program is connected to the API socket on the
computer node 428 to decide which views to display. The
views then access the API socket of the computer node 428
to populate views as the user navigates around.

In some implementations, the leader user interface 424
displays the same view but the leader user interface 424 is
not able to use that same API on the leader role 422 to get
the process list for the computer node 428. Instead, because
the leader user interface 424 receives the URI to access the
view, the leader user interface 424 knows that it should load
the data for the computer node 428 with that GUID instead
so it loads a different API on the leader role 422.

Through the connection enabled by the first socket 430A,
the computer node 428 can relay status and health data to the
leader server 426; and the leader server 426 can push
configurations to the computer node 428. Through the
connection enabled by the first socket 430A, the leader
server 426 can send requests for the API to the computer
node 428 and get back a response from the computer node.
For instance, the leader user interface 424 of the leader role
422 may transmit a request to the leader server 426 through
the second socket 430B. After receiving the request, the
leader server 426 rewrites the received URL and then relays
(e.g., proxies) the request through the first socket 430A to
the computer node 428; obtain the response from the com-
puter node 428; and forward the response to the leader user
interface 424 via the second socket 430B.

In some implementations, the computer node 428 initiates
the connection on the first socket 430A to the leader server
426 of the observability pipeline system 420, which can
simplify network configuration on the computer node 428.
In some implementations, the API on the computer node 428
is relayed to the leader user interface 424 through the leader
server 426; and the user interface (e.g., the user interface 402
in FIG. 4A) views on the computer node 428 are not relayed
to the leader user interface 424 through the leader server
426. For example, the list of the identified files on the
computer node 428 can be displayed on the leader user
interface 424. In some implementations, the methods and
techniques presented here allow the access to local inter-
faces of a computer node from a leader server based on a
distributed deployment.

FIG. 5 is a block diagram showing an example of a
computer system 500 that includes a data processing appa-
ratus and one or more computer-readable storage devices.
The term “data-processing apparatus” encompasses all kinds
of apparatus, devices, nodes, and machines for processing
data, including by way of example, a programmable pro-
cessor, a computer, a system on a chip, or multiple ones, or
combinations, of the foregoing, e.g., processor 510. The
apparatus can include special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation specific integrated circuit). The apparatus can also
include, in addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, a cross-
platform runtime environment, a virtual machine, or a
combination of one or more of them.

US 11,921,602 B2

19 20

5

10

15

20

25

30

35

40

45

50

55

60

65

A computer program (also known as a program, software,
software application, script, or code), e.g., computer pro-
gram 524, can be written in any form of programming
language, including compiled or interpreted languages,
declarative or procedural languages, and it can be deployed
in any form, including as a stand-alone program or as a
module, component, subroutine, object, or other unit suit-
able for use in a computing environment. A computer
program may, but need not, correspond to a file in a file
system. A program can be stored in a portion of a file that
holds other programs or data (e.g., one or more scripts stored
in a markup language document), in a single file dedicated
to the program, or in multiple coordinated files (e.g., files
that store one or more modules, sub programs, or portions of
code). A computer program can be deployed to be executed
on one computer or on multiple computers that are located
at one site or distributed across multiple sites and intercon-
nected by a communication network.

Some of the processes and logic flows described in this
specification can be performed by one or more program-
mable processors, e.g., processor 510, executing one or
more computer programs to perform actions by operating on
input data and generating output. The processes and logic
flows can also be performed by, and apparatus can also be
implemented as, special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and processors of any digital
computer. Generally, a processor will receive instructions
and data from a read-only memory or a random-access
memory or both, e.g., memory 520. Elements of a computer
can include a processor that performs actions in accordance
with instructions, and one or more memory devices that
store the instructions and data. A computer may also include
or be operatively coupled to receive data from or transfer
data to, or both, one or more mass storage devices for storing
data, e.g., magnetic disks, magneto optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., a phone, an electronic appliance, a mobile audio or
video player, a game console, a Global Positioning System
(GPS) receiver, or a portable storage device (e.g., a universal
serial bus (USB) flash drive). Devices suitable for storing
computer program instructions and data include all forms of
non-volatile memory, media, and memory devices, includ-
ing by way of example, semiconductor memory devices
(e.g., EPROM, EEPROM, flash memory devices, and oth-
ers), magnetic disks (e.g., internal hard disks, removable
disks, and others), magneto optical disks, and CD ROM and
DVD-ROM disks. In some cases, the processor and the
memory can be supplemented by, or incorporated in, special
purpose logic circuitry.

The example power unit 540 provides power to the other
components of the computer system 500. For example, the
other components may operate based on electrical power
provided by the power unit 540 through a voltage bus or
other connection. In some implementations, the power unit
540 includes a battery or a battery system, for example, a
rechargeable battery. In some implementations, the power
unit 540 includes an adapter (e.g., an AC adapter) that
receives an external power signal (from an external source)
and converts the external power signal to an internal power
signal conditioned for a component of the computer system
500. The power unit 540 may include other components or
operate in another manner.

To provide for interaction with a user, operations can be
implemented on a computer having a display device, e.g.,
display 550, (e.g., a monitor, a touchscreen, or another type
of display device) for displaying information to the user and
a keyboard and a pointing device (e.g., a mouse, a trackball,
a tablet, a touch sensitive screen, or another type of pointing
device) by which the user can provide input to the computer.
Other kinds of devices can be used to provide for interaction
with a user as well; for example, feedback provided to the
user can be any form of sensory feedback, e.g., visual
feedback, auditory feedback, or tactile feedback; and input
from the user can be received in any form, including
acoustic, speech, or tactile input. In addition, a computer can
interact with a user by sending documents to, and receiving
documents from, a device that is used by the user; for
example, by sending web pages to a web browser on a user’s
client device in response to requests received from the web
browser.

The computer system 500 may include a single computing
device, or multiple computers that operate in proximity or
generally remote from each other and typically interact
through a communication network, e.g., via interface 530.
Examples of communication networks include a local area
network (“LAN”) and a wide area network (“WAN”), an
inter-network (e.g., the Internet), a network comprising a
satellite link, and peer-to-peer networks (e.g., ad hoc peer-
to-peer networks). A relationship between client and server
may arise by virtue of computer programs running on the
respective computers and having a client-server relationship
to each other.

The example interface 530 may provide communication
with other systems or devices. In some cases, the interface
530 includes a wireless communication interface that pro-
vides wireless communication under various wireless pro-
tocols, such as, for example, Bluetooth, Wi-Fi, Near Field
Communication (NFC), GSM voice calls, SMS, EMS, or
MMS messaging, wireless standards (e.g., CDMA, TDMA,
PDC, WCDMA, CDMA2000, GPRS) among others. Such
communication may occur, for example, through a radio-
frequency transceiver or another type of component. In some
cases, the interface 530 includes a wired communication
interface (e.g., USB, Ethernet) that can be connected to one
or more input/output devices, such as, for example, a key-
board, a pointing device, a scanner, or a networking device
such as a switch or router, for example, through a network
adapter.

In a general aspect, an edge-based data collection system
discovers data in an observability pipeline system.

In a first example, a method is performed by an edge agent
of an observability pipeline system running on a computer
node. The method includes identifying processes running on
the computer node; identifying files on the computer node
that the processes have opened for writing; accessing log
discovery parameters of the observability pipeline system;
selecting a plurality of files from the identified files accord-
ing to the log discovery parameters; generating a list of
discovered log files, the list of discovered log files compris-
ing a path and a name for each of the plurality of files;
adding the list of discovered log files to a list of monitored
log files to be monitored by the observability pipeline
system; and after adding the list of discovered log files to the
list of monitored log files, monitoring the plurality of files to
generate input for the observability pipeline system.

Implementations of the first example may include one or
more of the following features. The method further includes
extracting data from the list of discovered log files; gener-
ating observability pipeline input data by formatting the

US 11,921,602 B2

21 22

5

10

15

20

25

30

35

40

45

50

55

60

65

extracted data; and processing the observability pipeline
input data by operation of a data processing engine on the
computer node. Processing the observability pipeline input
data generates observability pipeline output data. The
method includes collecting metadata from the computer
node; augmenting the observability pipeline output data to
include the metadata; and sending the augmented observ-
ability pipeline output data to a data destination. The log
discovery parameters comprise a file type parameter, a file
path parameter, or a file name parameter. The edge agent
runs in a container on the computer node, and identifying
processes running on the computer node includes mounting
a root file system of the computer node; and scanning the
root file system to identify processes running in other
containers.

Implementations of the first example may include one or
more of the following features. Identifying the files on the
computer node comprises identifying a first file, and the
method includes identifying a container on the computer
node where the first file is defined; and identifying a modi-
fied path for the first file, wherein the modified path allows
a process running outside the container to access the first
file. The method includes running a container discovery
process to identify containers running on the computer node;
detecting console log files in each of the containers; and
adding a list of the console log files to the list of monitored
log files.

Implementations of the first example may include one or
more of the following features. The method includes running
a container discovery process to identify containers running
on the computer node; detecting console logs in each of the
containers; and collecting the console logs through one or
more sockets. The method further includes collecting con-
tainer metrics for each of the containers; generating observ-
ability pipeline input data by formatting the container met-
rics; and processing the observability pipeline input data by
operation of a data processing engine on the computer node.

Implementations of the first example may include one or
more of the following features. The method includes modi-
fying the list of discovered log files based on input received
through a user interface in response to the list of discovered
log files being presented to a user. Adding the list of
discovered log files to the list of monitored log files includes
adding the modified list of discovered log files to the list of
monitored log files. The plurality of files is a first plurality
of files. The list of discovered log files is a first list of
discovered log files. The method includes modifying the log
discovery parameters based on user input; selecting a second
plurality of files from the identified files according to the
modified log discovery parameters; generating a second list
of discovered log files, the second list of discovered log files
comprising a path and a name for each of the second
plurality of files; and adding the second list of discovered log
files to the list of monitored log files to be monitored by the
observability pipeline system. The observability pipeline
system includes a leader role communicably coupled to the
computer node through a network. The method includes
displaying a list of the identified files on a user interface of
the leader role.

In a second example, a computer system includes one or
more computer processors that perform one or more opera-
tions of the first example.

In a third example, a non-transitory computer-readable
medium comprises instructions that are operable when
executed by data processing apparatus to perform one or
more operations of the first example.

While this specification contains many details, these
should not be understood as limitations on the scope of what
may be claimed, but rather as descriptions of features
specific to particular examples. Certain features that are
described in this specification or shown in the drawings in
the context of separate implementations can also be com-
bined. Conversely, various features that are described or
shown in the context of a single implementation can also be
implemented in multiple embodiments separately or in any
suitable sub-combination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
components in the implementations described above should
not be understood as requiring such separation in all imple-
mentations, and it should be understood that the described
program components and systems can generally be inte-
grated together in a single product or packaged into multiple
products.

A number of embodiments have been described. Never-
theless, it will be understood that various modifications can
be made. Accordingly, other embodiments are within the
scope of the following claims.

What is claimed is:
1. A method performed by an edge agent of an observ-

ability pipeline system, the edge agent running on a com-
puter node, the method comprising:

identifying processes running on the computer node;
identifying files on the computer node that the processes

have opened for writing;
accessing log discovery parameters of the observability

pipeline system;
selecting a plurality of files from the identified files

according to the log discovery parameters;
generating a list of discovered log files, the list of dis-

covered log files comprising a path and a name for each
of the plurality of files;

adding the list of discovered log files to a list of monitored
log files to be monitored by the observability pipeline
system; and

after adding the list of discovered log files to the list of
monitored log files, monitoring the plurality of files to
generate input for the observability pipeline system.

2. The method of claim 1, wherein monitoring the plu-
rality of files to generate input for the observability pipeline
system comprises:

extracting data from the one or more of the plurality of
files;

generating observability pipeline input data by formatting
the extracted data; and

processing the observability pipeline input data by opera-
tion of a data processing engine on the computer node.

3. The method of claim 2, wherein processing the observ-
ability pipeline input data generates observability pipeline
output data, and the method comprises:

collecting metadata from the computer node;
augmenting the observability pipeline output data to

include the metadata; and
sending the augmented observability pipeline output data

to a data destination.
4. The method of claim 1, wherein the log discovery

parameters comprise a file type parameter, a file path param-
eter, or a file name parameter.

US 11,921,602 B2

23 24

5

10

15

20

25

30

35

40

45

50

55

60

65

5. The method of claim 1, wherein the edge agent runs in
a container on the computer node, and identifying processes
running on the computer node comprises:

mounting a root file system of the computer node; and

scanning the root file system to identify processes running
in other containers.

6. The method of claim 1, wherein identifying files on the
computer node comprises identifying a first file, and the
method comprises:

identifying a container on the computer node where the
first file is defined; and

identifying a modified path for the first file, wherein the
modified path allows a process running outside the
container to access the first file.

7. The method of claim 1, comprising:

running a container discovery process to identify contain-
ers running on the computer node;

detecting console log files in each of the containers; and

adding a list of the console log files to the list of monitored
log files.

8. The method of claim 1, comprising:

running a container discovery process to identify contain-
ers running on the computer node;

detecting console logs in each of the containers; and

collecting the console logs through one or more sockets.

9. The method of claim 8, comprising:

collecting container metrics for each of the containers;

generating observability pipeline input data by formatting
the container metrics; and

processing the observability pipeline input data by opera-
tion of a data processing engine on the computer node.

10. The method of claim 1, comprising modifying the list
of discovered log files based on input received through a
user interface in response to the list of discovered log files
being presented to a user, wherein adding the list of discov-
ered log files to the list of monitored log files comprises
adding the modified list of discovered log files to the list of
monitored log files.

11. The method of claim 1, wherein the plurality of files
is a first plurality of files, the list of discovered log files is
a first list of discovered log files, and the method comprises:

modifying the log discovery parameters based on user
input;

selecting a second plurality of files from the identified
files according to the modified log discovery param-
eters;

generating a second list of discovered log files, the second
list of discovered log files comprising a path and a
name for each of the second plurality of files; and

adding the second list of discovered log files to the list of
monitored log files to be monitored by the observability
pipeline system.

12. The method of claim 1, wherein the observability
pipeline system comprises a leader role operating on a
second computer node that communicates with the computer
node over a network, and the method comprises displaying
a list of the identified files on a user interface of the second
computer node.

13. A computer node comprising:

one or more processors; and

memory storing instructions that, when executed by the
one or more processors, cause the one or more proces-
sors to perform operations of an edge agent of an

observability pipeline system, the operations compris-
ing:
identifying processes running on the computer node;
identifying files on the computer node that the pro-

cesses have opened for writing;
accessing log discovery parameters of the observability

pipeline system;
selecting a plurality of files from the identified files

according to the log discovery parameters;
generating a list of discovered log files, the list of

discovered log files comprising a path and a name for
each of the plurality of files;

adding the list of discovered log files to a list of
monitored log files to be monitored by the observ-
ability pipeline system; and

after adding the list of discovered log files to the list of
monitored log files, monitoring the plurality of files to
generate input for the observability pipeline system.

14. The computer node of claim 13, wherein monitoring
the plurality of files to generate input for the observability
pipeline system comprises:

extracting data from one or more of the plurality of files;
generating observability pipeline input data by formatting

the extracted data; and
processing the observability pipeline input data by opera-

tion of a data processing engine on the computer node.
15. The computer node of claim 14, wherein processing

the observability pipeline input data generates observability
pipeline output data, and the operations comprise:

collecting metadata from the computer node;
augmenting the observability pipeline output data to

include the metadata; and
sending the augmented observability pipeline output data

to a data destination.
16. The computer node of claim 13, wherein the log

discovery parameters comprise a file type parameter, a file
path parameter, or a file name parameter.

17. The computer node of claim 13, wherein the edge
agent runs in a container on the computer node, and iden-
tifying processes running on the computer node comprises:

mounting a root file system of the computer node; and
scanning the root file system to identify processes running

in other containers.
18. The computer node of claim 13, wherein identifying

files on the computer node comprises identifying a first file,
and the operations comprise:

identifying a container on the computer node where the
first file is defined; and

identifying a modified path for the first file, wherein the
modified path allows a process running outside the
container to access the first file.

19. The computer node of claim 13, wherein the opera-
tions comprise:

running a container discovery process to identify contain-
ers running on the computer node;

detecting console log files in each of the containers; and
adding a list of the console log files to the list of monitored

log files.
20. The computer node of claim 13, wherein the opera-

tions comprise:
running a container discovery process to identify contain-

ers running on the computer node;
detecting console logs in each of the containers; and
collecting the console logs through one or more sockets.
21. The computer node of claim 20, wherein the opera-

tions comprise:
collecting container metrics for each of the containers;
generating observability pipeline input data by formatting

the container metrics; and

US 11,921,602 B2

25 26

5

10

15

20

25

30

35

40

45

50

55

60

65

processing the observability pipeline input data by opera-
tion of a data processing engine on the computer node.

22. The computer node of claim 13, wherein the opera-
tions comprise:

modifying the list of discovered log files based on input
received through a user interface in response to the list
of discovered log files being presented to a user,
wherein adding the list of discovered log files to the list
of monitored log files comprises adding the modified
list of discovered log files to the list of monitored log
files.

23. The computer node of claim 13, wherein the plurality
of files is a first plurality of files, the list of discovered log
files is a first list of discovered log files, and the operations
comprise:

modifying the log discovery parameters based on user
input;

selecting a second plurality of files from the identified
files according to the modified log discovery param-
eters;

generating a second list of discovered log files, the second
list of discovered log files comprising a path and a
name for each of the second plurality of files; and

adding the second list of discovered log files to the list of
monitored log files to be monitored by the observability
pipeline system.

24. A non-transitory computer-readable medium storing
instructions that perform operations of an edge agent of an
observability pipeline system when executed by data pro-
cessing apparatus of a computer node, the operations com-
prising:

identifying processes running on the computer node;
identifying files on the computer node that the processes

have opened for writing;
accessing log discovery parameters of the observability

pipeline system;
selecting a plurality of files from the identified files

according to the log discovery parameters;
generating a list of discovered log files, the list of dis-

covered log files comprising a path and a name for each
of the plurality of files;

adding the list of discovered log files to a list of monitored
log files to be monitored by the observability pipeline
system; and

after adding the list of discovered log files to the list of
monitored log files, monitoring the plurality of files to
generate input for the observability pipeline system.

∗ ∗ ∗ ∗ ∗

US 11,921,602 B2

27 28

5

10

15

20

	E_Grant_Covers_All_508 5
	E_Grant_Covers_All_508 6

		USPTO Director
	2024-03-04T13:19:59-0500
	United States Patent and Trademark Office
	United States Patent and Trademark Office
	Digitally Sealed

